OplEX

Format Based on Plain TgX and OPmac!

Version 1.14
Petr Olsak, 2020, 2021, 2022, 2023, 2024

http://petr.olsak.net/optex

OpTEX is LuaTEX format with Plain TEX and OPmac. Only LuaTgEX engine is supported.
OpTEX should be a modern Plain TEX with power from OPmac (Fonts Selection System,

colors, graphics, references, hyperlinks, indexing, bibliography, ...) with preferred Unicode fonts.
The main goal of OpTEX is:

OpTEX keeps the simplicity (like in Plain TEX and OPmac macros).

There is no old obscurities concerning various 8-bit encodings and various engines.

OpTEX provides a powerful Fonts Selection System (for Unicode font families, of course).
OpTEX supports hyphenations of all languages installed in your TEX system.

All features from OPmac macros are copied. For example sorting words in the Index?,
reading .bib files directly?, syntax highlighting?, colors, graphics, hyperlinks, references).
Macros are documented in the same place where code is.

e User namespace of control sequences is separated from the internal namespace of OpTEX
and primitives (\foo versus _foo). The namespaces for macro writers are designed too.

If you need to customize your document or you need to use something very specific, then you
can copy relevant parts of OpTEX macros into your macro file and do changes to these macros
here. This is a significant difference from IWTEX or ConTEXt, which is an attempt to create a
new user level with a plenty of non-primitive parameters and syntax hiding TEX internals. The
macros from OpTEX are simple and straightforward because they solve only what is explicitly
needed, they do not create a new user level for controlling your document. We are using TEX
directly in this case. You can use OpTEX macros, understand them, and modify them.

OpTEX offers a markup language for authors of texts (like INTEX), i. e. the fixed set of tags
to define the structure of the document. This markup is different from the KTEX markup. It
may offer to write the source text of the document somewhat clearer and more attractive.

The manual includes two parts: user documentation and technical documentation. The
second part is generated directly from the sources of OpTEX. There are many hyperlinks from
one part to second and vice versa.

This manual describes OpTEX features only. We suppose that the user knows TEX basics.
They are described in many books. You can see a short document TEX in nutshell too.

1 OPmac package is a set of simple additional macros to Plain TEX. It enables users to take advantage of IXTEX
functionality but keeps Plain TEX simplicity. See http://petr.olsak.net/opmac-e.html for more information about it.
2 All these features are implemented by TEX macros, no external program is needed.

http://petr.olsak.net/optex
http://petr.olsak.net/ftp/olsak/optex/tex-nutshell.pdf
http://petr.olsak.net/opmac-e.html

Contents

1 User documentation 5
1.1 Starting with OpTEX« . . o e 5
1.2 Page layout L e 5

1.2.1 Setting the margins Lo L 5

1.2.2 Concept of the default page 6

1.2.3 Footnotes and marginal notes Lo Lo 7
1.3 Fonts e e e e e e 7

1.3.1 Font families e 7

1.3.2 Font sizes L e 8

1.3.3 Typesetting math 9
1.4 Typical elements of the document 10

1.4.1 Chapters and sections 10

1.4.2 Another numbered objects 10

1.4.3 References L 12

1.4.4 Hyperlinks, outlines 12

1.4.5 Lists . . . o o o 13

1.4.6 Tables e 14

1.4.7 Verbatim e e e e 16
1.5 Autogenerated lists 18

1.5.1 Table of contents L 18

1.5.2 Making the index L 18

1.5.3 BIibTEXInG o . o e 20
1.6 Graphics e 21

1.6.1 Colors, transparency o vt e e e e e 21

1.6.2 Tmages o L 22

1.6.3 PDF transformations L 23

1.6.4 Ovals, circles 23

1.6.5 Putting images and texts wherever Lo Lo 24
1.7 Others L e 24

1.7.1 Using more languages e 24

1.7.2 Pre-defined styles L 25

1.7.3 Loading other macro packages o 26

1.7.4 Lorem ipsum dolor sito 26

1.7.5 Logos . . . o o o o 26

1.7.6 The last page« . o o e 27

1.7.7 Use OpTEX . . . o o e 27

1.7.8 OpIEX tricks o o L o 27
1.8 Summary e e e e 28
1.9 API for macro writers L e e 29

1.10 Compatibility with Plain TEX o o 30
1.11 Related documents L. 30

2 Technical documentation 31
2.1 The main initialization file o 31
2.2 Basic principles of OpTEX sources e 33

2.2.1 Concept of namespaces of control sequences 33

2.2.2 Macro files syntaxo 34

2.2.3 Name spaces for package writers 0oL 34

2.2.4 Summary about rules for external macro files published for OpITEX 35

2

2.2.5 The implementation of the namespaces and macros for macro-files 35

2.3 pdfTEX initialization L 37
2.4 Basic MaCroSo oo e e e 39
2.5 Allocators for TEX registers L L 41
2.6 If-macros, loops, iS-mMacros e 43
2.6.1 Classical \mewif e 43
2.6.2 LoOPpS oo 44
2.6.3 Is-macroso e e 45
2.7 Setting parameterso e e e 47
2.7.1 Primitive registers L L 48
2.7.2 Plain TEX registers L e 48
2.7.3 Different settings than in plain TEX oL L. 49
2.7.4 OpTEX parameterso e 50
2.8 More OpTEX mMacros v v v v i it e 54
2.9 Using key=value format in parameters 59
2.10 Plain TEX macros oL e e 60
2.11 Preloaded fonts for text mode L o 65
2.12 Using \font primitive directly Lo o 66
2.12.1 The \setfontsize mMAaCro v o v i e 66
2.12.2 The \font-like commands summary 67
2.12.3 The \fontlet declarator 67
2.12.4 Optical sizes L 67
2.12.5 Font rendering Lo L e 68
2.12.6 Implementation of resizing 68
2.13 The Font Selection System L 70
2.13.1 Terminology L 70
2.13.2 Font families, selecting fonts o 70
2.13.3 Math Fonts 71
2.13.4 Declaring font commands o000 71
2.13.5 The \fontdef declarator in detail 72
2.13.6 The \famvardef declaratoro 72
2.13.7 The \tt variant selectoro 73
2.13.8 Font commands defined by \def 73
2.13.9 Modifying font features Lo 73
2.13.10 Special font modifiers Lo 74
2.13.11 How to create the font family file 74
2.13.12 How to write the font family file with optical sizes 7
2.13.13 How to register the font family in the Font Selection System 78
2.13.14 Implementation of the Font Selection System 79
2.14 Preloaded fonts for math mode L. 86
2.15 Math macros L. 89
2.16 Unicode-math fonts L 98
2.16.1 Unicode-math macros preloaded in the format 99
2.16.2 Macros and codes set when \loadmath is processed firstly 102
2.16.3 More Unicode-math examples 0L 110
2.16.4 Printing all Unicode math slots in used math font 110
2.17 Scaling fonts in document (high-level macros) 111
2.18 Output routine 113
2.19 Margins e e 116
2.20 Colorso e e e 118
2.20.1 Basicconcept Lo 118
2.20.2 Color mixing 118

2.20.3 Implementationo 119

2.21 The .ref file e e 123
2.22 References L 125
2.23 Hyperlinks o o 127
2.24 Making table of contents oL 129
2.25 PDF outlines e 131
2.25.1 Nesting PDF outlines 131
2.25.2 Strings in PDF outlineso oo o 132
2.26 Chapters, sections, subsections o oo 134
2.27 Lists,items 139
2.28 Verbatim, listings 141
2.28.1 Inline and “display” verbatim 141
2.28.2 Listings with syntax highlighting 145
2.29 Graphics L e 149
2.30 The \table macro, tablesand rules 154
2.30.1 The boundary declarator : 154
2.30.2 Usage of the \tabskip primitive 0. 155
2.30.3 Tables to given widtho 155
2.30.4 \egbox: boxes with equal width across the whole document 156
2.30.5 Implemetation of the \table macro and friends 156
2.31 Balanced multi-columns 161
2.32 Citations, bibliography 163
2.32.1 Macros for citations and bibliography preloaded in the format 163
2.32.2 The \usebib command 167
2.32.3 Notes for bib-style writers oL 167
2.32.4 Direct reading of .bibfileso Lo 168
2.32.5 The usebib.opm macro file loaded when \usebibisused 169
2.32.6 Usage of the bib-is0690 style 175
2.32.7 Implementation of the bib-is0o690 style 181
2.33 Sorting and making Indexo Lo 186
2.34 Footnotes and marginal noteso 193
235 Styles . .o 195
2.35.1 \report and \letterstyles. 195
2.35.2 \slides style for presentations 196
2.36 Logoso e e 199
2.37 Multilingual support Lo 200
2.37.1 Lowercase, uppercase codes 200
2.37.2 Multilingual phrases and quotation marks 201
2.37.3 Languages declaration 203
2.37.4 Data for various languages oL oo 206
2.38 Other macros e 207
2.39 Lua code embedded to the format L. 210
2.39.1 Generalo 211
2.39.2 Allocators 211
2.39.3 Callbacks 212
2.39.4 Management of PDF page resources 217
2.39.5 Handling of colors and transparency using attributes 218
2.40 Printing documentation oL oL 221
2.40.1 Implementation L 222
Index 226

Chapter 1

User documentation

1.1 Starting with OpTEX

OpTIEX is compiled as a format for LuaTEX. Maybe there is a command optex in your TEX
distribution. Then you can write into the command line

optex document

You can try to process optex op-demo or optex optex-doc.

If there is no optex command, see more information about installation OpTEX at http://
petr.olsak.net/optex.

A minimal document should be

\fontfam[LMfonts]
Hello World! \bye

The first line \fontfam[LMfonts] tells that Unicode Latin Modern fonts (derived from
Computer Modern) are used. If you omit this line then preloaded Latin Modern fonts are used
but preloaded fonts cannot be in Unicode!. So the sentence Hello World will be OK without
the first line, but you cannot print such sentence in other languages (for example Ahoj sv&te!)
where Unicode fonts are needed because the characters like & are not mapped correctly in
preloaded fonts.

A somewhat larger example with common settings should be:

\fontfam[Termes] J selecting Unicode font family Termes (section 1.3.1)
\typosize[11/13] ¥ setting default font size and baselineskip (sec. 1.3.2)
\margins/1 a4 (1,1,1,1)in % setting A4 paper, 1 in margins (section 1.2.1)
\cslang % Czech hyphenation patterns (section 1.7.1)

Tady je zkuSebni textik v Ceském jazyce.
\bye

You can look at op—demo.tex file for a more complex, but still simple example.

1.2 Page layout

1.2.1 Setting the margins

The \margins command declares margins of the document. This command have the following
parameters:

\margins/(pg) (fmt) ((left),(right),(top),(bot)) (unit)
example:
\margins/1 a4 (2.5,2.5,2,2)cm

Parameters are:

(pg) ... 1 or 2 specifies one-page or two-pages design.

(fmt) ... paper format (a4, a4l, a5, letter, etc. or user defined).

(left), (right), (top), (bot) ... gives the amount of left, right, top and bottom margins.
(unit) ... unit used for values (left), (right), (top), (bot).

1 This is a technical limitation of LuaTEX for fonts downloaded in formats: only 8bit fonts can be preloaded.

5

http://petr.olsak.net/optex
http://petr.olsak.net/optex

Each of the parameters (left), (right), (top), (bot) can be empty. If both (left) and (right)
are nonempty then \hsize is set. Else \hsize is unchanged. If both (left) and (right) are
empty then typesetting area is centered in the paper format. The analogical rule works when
(top) or (bot) parameter is empty (\vsize instead \hsize is used). Examples:

\margins/1 a4 (,,,)mm % \hsize, \vsize untouched,
% typesetting area centered
\margins/1 a4 (,2,,)cm 7 right margin set to 2cm
% \hsize, \vsize untouched, vertically centered

If (pg)=1 then all pages have the same margins. If (pg)=2 then the declared margins are
true for odd pages. The margins at the even pages are automatically mirrored in such case, it
means that (left) is replaced by (right) and vice versa.

OpTEX declares following paper formats: a4, a4l (landscape a4), a5, abl, a3, a3l, b5, letter
and user can declare another own format by \sdef:

\sdef{_pgs:b51}{(250,176) mm}
\sdef{_pgs:letterl}{(11,8.5)in}

The (fmt) can be also in the form ((width),(height)) (unit) where (unit) is optional. If it is
missing then (unit) after margins specification is used. For example:

\margins/1 (100,200) (7,7,7,7)mm

declares the paper 100x200 mm with all four margins 7mm. The spaces before and after (fmt)
parameter are necessary.

The command \magscale[(factor)] scales the whole typesetting area. The fixed point
of such scaling is the upper left corner of the paper sheet. Typesetting (breakpoints etc.) is
unchanged. All units are relative after such scaling. Only paper format’s dimensions stay
unscaled. Example:

\margins/2 ab (22,17,19,21)mm
\magscale[1414] \margins/1 a4 (,,,)mm

The first line sets the \hsize and \vsize and margins for final printing at ab format. The setting
on the second line centers the scaled typesetting area to the true a4 paper while breaking points
for paragraphs and pages are unchanged. It may be usable for review printing. After the review
is done, the second line can be commented out.

1.2.2 Concept of the default page

OpTEX uses “output routine” for page design. It is very similar to the Plain TEX output routine.
There is \headline followed by “page body” followed by \footline. The \headline is empty
by default and it can be used for running headers repeated on each page. The \footline prints
centered page number by default. You can set the \footline to empty using \nopagenumbers
macro.

The margins declared by \margins macro (documented in the previous section 1.2.1) is
concerned to the page body, i.e. the \headline and \footline are placed to the top and
bottom margins.

The distance between the \headline and the top of the page body is given by the
\headlinedist register. The distance between bottom of the page body and the \footline is
given by \footlinedist. The default values are:

\headline = {}

\footline = {_hss_rmfixed _folio _hss} % \folio expands to page number
\headlinedist = 14pt % from baseline of \headline to top of page body
\footlinedist = 24pt % from last line in pagebody to baseline of footline

6

The page body should be divided into top insertions (floating tables and figures) followed
by a real text and followed by footnotes. Typically, the only real text is here.

The \pgbackground tokens list is empty by default but it can be used for creating a back-
ground of each page (colors, picture, watermark for example). The macro \draft uses this
register and puts big text DRAFT as a watermark to each page. You can try it.

More about the page layout is documented in sections 2.7.4 and 2.18.

1.2.3 Footnotes and marginal notes

The Plain TEX’s macro \footnote can be used as usual. But a new macro \fnote{(text)} is
defined. The footnote mark is added automatically and it is numbered on each chapter from
one?. The (text) is scaled to 80 %. User can redefine footnote mark or scaling, as shown in the
section 2.34.

The \fnote macro is fully applicable only in “normal outer” paragraph. It doesn’t work
inside boxes (tables, for example). If you are solving such a case then you can use the command
\fnotemark(numeric-label) inside the box: only the footnote mark is generated here. When
the box is finished you can use \fnotetext{(text)}. This macro puts the (text) to the footnote.
The (numeric-label) has to be 1 if only one such command is in the box. Second \fnotemark
inside the same box has to have the parameter 2 etc. The same number of \fnotetexts have
to be written after the box as the number of \fnotemarks inserted inside the box. Example:

Text in a paragraph\fnote{First notice}... % a "normal" footnote
\table{...}{...\fnotemarkl...\fnotemark2...} 9’ two footnotes in a box
\fnotetext{Second notice}

\fnotetext{Third notice}

\table{...}{...\fnotemarkl...} % one footnote in a box
\fnotetext{Fourth notice}

The marginal note can be printed by the \mnote{(text)} macro. The (text) is placed to the
right margin on the odd pages and it is placed to the left margin on the even pages. This is
done after second TEX run because the relevant information is stored in an external file and read
from it again. If you need to place the notes only to the fixed margin write \fixmnotes\right
or \fixmnotes\left.

The (text) is formatted as a little paragraph with the maximal width \mnotesize ragged
left on the left margins or ragged right on the right margins. The first line of this little
paragraph has its vertical position given by the position of \mnote in the text. The excep-
tions are possible by using the up keyword: \mnote up(dimen){(text)}. You can set such
(dimen) to each \mnote manually in final printing in order to margin notes do not overlap. The
positive value of (dimen) shifts the note up and negative value shifts it down. For example
\mnote up 2\baselineskip{(text)} shifts this marginal note two lines up.

1.3 Fonts

1.3.1 Font families

You can select the font family by \fontfam[{Family-name)]. The argument (Family-name) is
case insensitive and spaces are ignored in it. For example, \fontfam[LM Fonts] is equal to
\fontfam[LMfonts] and it is equal to \fontfam[Imfonts]. Several aliases are prepared, thus
\fontfam[Latin Modern] can be used for loading Latin Modern family too.

2 You can declare \fnotenumglobal if you want footnotes numbered in whole document from one or \fnotenumpages if
you want footnotes numbered at each page from one. Default setting is \fnotenumchapters

If you write \fontfam[?] then all font families registered in OpTEX are listed on the terminal
and in the log file. If you write \fontfam[catalog] then a catalog of all fonts registered in
OpTEX and available in your TEX system is printed. See also this catalog.

If the family is loaded then font modifiers applicable in such font family are listed on the
terminal: (\caps, \cond for example). And there are four basic variant selectors (\rm, \bf,
\it, \bi). The usage of variant selectors is the same as in Plain TEX: {\it italics text},
{\bf bold text} etc.

The font modifiers (\caps, \cond for example) can be used before a variant selector and
they can be (independently) combined: \caps\it or \cond\caps\bf. The modifiers keep their
internal setting until the group ends or until another modifier that negates the previous feature
is used. So {\caps \rm First text \it Second text} gives FIRST TEXT SECOND TEXT.

The font modifier without following variant selector does not change the font actually, it
only prepares data used by next variant selectors. There is one special variant selector \currvar
which does not change the selected variant but reloads the font due to (maybe newly specified)
font modifier(s).

The context between variants \rm <> \it and \bf < \bi is kept by the \em macro (empha-
size text). It switches from current \rm to \it, from current \it to \rm, from current \bf to
\bi and from current \bi to \bf. The italics correction \/ is inserted automatically, if needed.
Example:

This is {\it important\/} text.
This is\/ {\rm important} text.
This is {\bi important\/} text.
This is\/ {\bf important} text.

This is {\em important} text. %
\it This is {\em important} text. %
\bf This is {\em important} text. %
\bi This is {\em important} text. %

More about the OpTEX Font Selection System is written in the technical documentation in
the section 2.13. You can mix more font families in your document, you can declare your own
variant selectors or modifiers, etc.

1.3.2 Font sizes

The command \typosize [(fontsize)/(baselineskip)] sets the font size of text and math fonts
and baselineskip. If one of these two parameters is empty, the corresponding feature stays
unchanged. Don’t write the unit of these parameters. The unit is internally set to \ptunit
which is 1pt by default. You can change the unit by the command \ptunit=(something-else),
for instance \ptunit=1mm enlarges all font sizes declared by \typosize. Examples:

\typosize[10/12] 7 default of Plain TeX
\typosize[11/12.5] % font 11lpt, baseline 12.5pt
\typosize[8/] % font 8pt, baseline unchanged

The commands for font size setting described in this section have local validity. If you put
them into a group, the settings are lost when the group is finished. If you set something relevant
with paragraph shape (baselineskip given by \typosize for example) then you must first finalize
the paragraph before closing the group: {\typosize[12/14] ...(text of paragraph)... \par}.

The command \typoscale[(font-factor)/(baselineskip-factor)] sets the text and math
fonts size and baselineskip as a multiple of the current fonts size and baselineskip. The factor
is written in “scaled”-like way, it means that 1000 means factor one. The empty parameter is
equal to the parameter 1000, i.e. the value stays unchanged. Examples:

\typoscale[800/800] % fonts and baselineskip re-size to 80 %
\typoscale[\magstep2/] % fonts bigger 1,44times (\magstep2 expands to 1440)

First usage of \typosize or \typoscale macro in your document sets so-called main values,
i.e. main font size and main baselineskip. They are internally saved in registers \mainfosize
and \mainbaselineskip.

http://petr.olsak.net/ftp/olsak/optex/op-catalog.pdf

The \typoscale command does scaling with respect to current values by default. If you
want to do it with respect to the main values, type \scalemain immediately before \typoscale
command.

\typosize[12/14.4] ¥ first usage in document, sets main values internally
\typosize[15/18] ¥ bigger font
\scalemain \typoscale[800/800] % reduces from main values, no from current.

The \typosize and \typoscale macros initialize the font family by \rm. You can re-size
only the current font by the command \thefontsize [(font-size)] or the font can be rescaled
by \thefontscale[(factor)]. These macros don’t change math fonts sizes nor baselineskip.

There is “low level” \setfontsize{(size-spec)} command which behaves like a font modifier
and sets given font size used by next variant selectors. It doesn’t change the font size immedi-
ately, but the following variant selector does it. For example \setfontsize{at15pt}\currvar
sets current variant to 15pt.

If you are using a font family with “optical sizes feature” (i.e. there are more recommended
sizes of the same font which are not scaled linearly; a good example is Computer Modern
aka Latin Modern fonts) then the recommended size is selected by all mentioned commands
automatically.

More information about resizing of fonts is documented in the section 2.12.1.

1.3.3 Typesetting math

See the additional document Typesetting Math with OpTEX for more details about this issue.

OpTEX preloads a collection of 7bit Computer Modern math fonts and AMS fonts in
its format for math typesetting. You can use them in any size and in the \boldmath vari-
ant. Most declared text font families (see \fontfam in the section 1.3.1) are configured with
a recommended Unicode math font. This font is automatically loaded unless you specify
\noloadmath before first \fontfam command. See log file for more information about load-
ing text font family and Unicode math fonts. If you prefer another Unicode math font, specify
it by \loadmath{ [(font-file)]1} or \loadmath{(font-name)} before first \fontfam command.

Hundreds math symbols and operators like in AMSTEX are accessible. For example \alpha
a, \geq >, \sum), \sphericalangle <, \bumpeq, =. See AMSTEX manual or Typesetting
Math with OpTEX for complete list of math symbols.

The following math alphabets are available:

\mit % mathematical variables abc—xyz, ABC—XY Z
\it % text italics abc—xyz, ABC—XY Z
\rm % text roman abc—xyz, ABC—XYZ
\cal % normal calligraphics ABC-XYZ

\script % script ARBC—I Y ¥

\frak % fracture abc—ryz, ABE—-XY 3
\bbchar Y double stroked letters ABC—XYZ

\bf % sans serif bold abc—xyz, ABC—XYZ
\bi % sans serif bold slanted abc—xyz, ABC—XYZ

The last two selectors \bf and \bi select the sans serif fonts in math regardless of the
current text font family. This is a common notation for vectors and matrices. You can re-
declare them, see section 2.16.2 where definitions of Unicode math variants of \bf and \bi
selectors are documented.

The math fonts can be scaled by \typosize and \typoscale macros. Two math fonts
collections are prepared: \normalmath for normal weight and \boldmath for bold. The first
one is set by default, the second one is usable for math formulae in titles typeset in bold, for
example.

http://petr.olsak.net/ftp/olsak/optex/optex-math.pdf
http://petr.olsak.net/ftp/olsak/optex/optex-math.pdf#ref:objects
http://petr.olsak.net/ftp/olsak/optex/optex-math.pdf#ref:objects

You can use \mathbox{(text)} inside math mode. It behaves as {\hbox{(text)}} (i.e. the
(text) is printed in horizontal non-math mode) but the size of the (text) is adapted to the context
of math size (text or script or scriptscript).

1.4 Typical elements of the document

1.4.1 Chapters and sections

The documents can be divided into chapters (\chap), sections (\sec), subsections (\secc) and
they can be titled by \tit command. The parameters are separated by the end of current line
(no braces are used):

\tit Document title (end of line)
\chap Chapter title (end of line)
\sec Section title (end of line)
\secc Subsection title (end of line)

The chapters are automatically numbered by one number, sections by two numbers (chap-
ter.section), and subsections by three numbers. If there are no chapters then sections have only
one number and subsections two.

The implicit design of the titles of chapter etc. is implemented in the macros _printchap,
_printsec and _printsecc. A designer can simply change these macros if he/she needs
another behavior.

The first paragraph after the title of chapter, section, and subsection is not indented but
you can type \let_firstnoindent=\relax if you need all paragraphs indented.

If a title is so long then it breaks into more lines in the output. It is better to hint at the
breakpoints because TEX does not interpret the meaning of the title. Users can put the \nl
(means newline) to the breakpoints.

If you want to arrange a title to more lines in your source file then you can use ~~J at
the end of each line (except the last one). When ~~J is used, then the reading of the title
continues at the next line. The “normal” comment character % doesn’t work in titles. You can
use \nl,~"J if you want to have corresponding lines in the source and the output.

The chapter, section, or subsection isn’t numbered if the \nonum precedes. And the chapter,
section, or subsection isn’t delivered to the table of contents if \notoc precedes. You can combine
both prefixes.

1.4.2 Another numbered objects

Apart from chapters, sections, and subsections, there are another automatically numbered ob-
jects: equations, captions for tables and figures. The user can declare more numbered objects.
If the user writes the \eqmark as the last element of the display mode then this equation
is numbered. The equation number is printed in brackets. This number is reset in each section
by default.
If the \eqgalignno is used, then user can put \eqmark to the last column before \cr. For
example:

\egalignnoq{
a"2+b”2 &= c72 \cr
c &= \sqrt{a"2+b~2} & \egmark \cr}

Another automatically numbered object is a caption which is tagged by \caption/t
for tables and \caption/f for figures. The caption text follows. The \cskip can be used
between \caption text and the real object (table or figure). You can use two orders:
(caption)\cskip (object) or (object)\cskip (caption). The \cskip creates appropriate vertical
space between them. Example:

10

\caption/t The dependency of the computer-dependency on the age.
\cskip
\noindent\hfil\table{rl}{
age & value \crl\noalign{\smallskip}
0--1 & unmeasured \cr
1--6 & observable \cr
6--12 & significant \cr
12--20 & extremal \cr
20--40 & normal \cr
40--60 & various \cr
60--∞ & moderatel}

This example produces:
Table 1.4.1 The dependency of the computer-dependency on the age.

age value

0-1 unmeasured

1-6 observable
6-12 significant
12-20 extremal
20-40 normal
40-60 wvarious
60—00 moderate

You can see that the word “Table” followed by a number is added by the macro \caption/t
The caption text is centered. If it occupies more lines then the last line is centered.

The macro \caption/f behaves like \caption/t but it is intended for figure captions
with independent numbering. The word (Table, Figure) depends on the selected language (see
section 1.7.1 about languages).

If you wish to make the table or figure as a floating object, you need to use Plain TEX
macros \midinsert or \topinsert terminated by \endinsert. Example:

\topinsert J table and its caption printed at the top of the current page
<caption and table>
\endinsert

The pair \midinsert...\endinsert prefers to put the enclosed object to the current place. Only
if this is unable due to page breaking, it behaves like \topinsert...\endinsert.

There are five prepared counters A, B, C, D and E. They are reset in each chapter and
section®. They can be used in context of \numberedpar (letter){(text)} macro. For example:

\def\theorem {\numberedpar A{Theorem}}
\def\corollary {\numberedpar A{Corollaryl}}
\def\definition {\numberedpar B{Definition}}
\def\example {\numberedpar C{Examplel}}

Three independent numbers are used in this example. One for Theorems and Corollaries second
for Definitions and third for Examples. The user can write \theorem Let M be... and the
new paragraph is started with the text: Theorem 1.4.1. Let M be... You can add an optional
parameter in brackets. For example, \theorem [(L'Hépital's rule)] Let f, g be...
is printed like Theorem 1.4.2 (L’Hépital’s rule). Let f, g be...

3 This feature can be changed, see the section 2.26 in the technical documentation.

11

1.4.3 References

Each automatically numbered object documented in sections 1.4.1 and 1.4.2 can be referenced
if optional parameter [{label)] is appended to \chap, \sec, \secc, \caption/t, \caption/f
or \egmark. The alternative syntax is to use \label [(label)] before mentioned commands (not
necessarily directly before). The reference is realized by \ref [{label)] (prints the number of
the referenced object) or \pgref [(label)] (prints the page number). Example:

\sec[beatle] About Beatles

\noindent\hfil\table{r1}{...} % the table
\cskip
\caption/t [comp-depend] The dependency of the comp-dependency on the age.

\label [pythagoras]
$$ a2 + b"2 = c”2 \egmark $$

Now we can point to the section~\ref[beatle] on the page~\pgref [beatle]
or write something about the equation~\ref [pythagoras]. Finally there
is an interesting Table~\ref [comp-depend] .

The text printed by \ref or \pgref can be given explicitly by \ref [(label)]1{(text)} or
\pgref [(label)]1{(text)}. If the (text) includes the @ character, it is replaced by implicitly printed
text. Example: see \ref[lab]{section~@} prints the same as see section~\ref[lab], but
first case creates larger active area for mouse clicking, when \hyperlinks are declared.

If there are forward referenced objects then users have to run TEX twice. During each pass,
the working *.ref file (with references data) is created and this file is used (if it exists) at the
beginning of the document.

You can use the \labell[(label)] before the \theorem, \definition etc. (macros de-
fined with \numberedpar) if you want to reference these numbered objects. You can’t use
\theorem[(label)] because the optional parameter is reserved to another purpose here.

You can create a reference to whatever else by commands \1label [{label)]\wlabel{(text)}.
The connection between (label) and (text) is established. The \ref [{label)] will print (text).

By default, labels are not printed, of course. But if you are preparing a draft version of
your document then you can declare \showlabels. The labels are printed at their destination
places after such a declaration.

1.4.4 Hyperlinks, outlines

If the command \hyperlinks (color-in) (color-out) is used at the beginning of the document,
then the following objects are hyperlinked in the PDF output:

e numbers and texts generated by \ref or \pgref,

e numbers of chapters, sections, subsections, and page numbers in the table of contents,
e numbers or marks generated by \cite command (bibliography references),

e texts printed by \url or \ulink commands.

The last object is an external link and it is colored by (color-out). Other links are internal
and they are colored by (color-in). Example:

\hyperlinks \Blue \Green % internal links blue, URLs green.

You can use another marking of active links: by frames which are visible in the PDF viewer
but invisible when the document is printed. The way to do it is to define the macros _pgborder,
_tocborder, _citeborder, _refborder and _urlborder as the triple of RGB components
of the used color. Example:

12

\def_tocborder {1 0 0} % links in table of contents: red frame
\def_pgborder {0 1 0} % links to pages: green frame
\def_citeborder {0 0 1} % links to references: blue frame

By default, these macros are not defined. It means that no frames are created.

The hyperlinked footnotes can be activated by \fnotelinks (color-fnt) (color-fnf) where
footnote marks in the text have (color-fnt) and the same footnote marks in footnotes have
(color-fnf). You can define relevant borders _fntborder and _fnfborder analogically as
_pgborder (for example).

There are “low level” commands to create the links. You can specify the destination of
the internal link by \dest [(type) : (label)]. The active text linked to the \dest can be created
by \ilink [{type): (label)1{(text)}. The (type) parameter is one of the toc, pg, cite, ref, or
another special for your purpose. These commands create internal links only when \hyperlinks
is declared.

The \url macro prints its parameter in \tt font and creates a potential breakpoints in it
(after slash or dot, for example). If the \hyperlinks declaration is used then the parameter of
\url is treated as an external URL link. An example: \url{http://www.olsak.net} creates
http://www.olsak.net. The characters %, \, #, {, and } have to be protected by backslash
in the \url argument, the other special characters ~, ~, & can be written as single character®.
You can insert the \| command in the \url argument as a potential breakpoint.

If the linked text have to be different than the URL, you can use \ulink[(url)]{(text)}
macro. For example: \ulink [http://petr.olsak.net/optex]{\OpTeX/ pagel} outputs to the
text OpTEX page. The characters %, \, #, {, and } must be escaped in the (url) parameter.

The PDF format provides outlines which are notes placed in the special frame of the PDF
viewer. These notes can be managed as a structured and hyperlinked table of contents of the
document. The command \outlines{(level)} creates such outlines from data used for the table
of contents in the document. The (level) parameter gives the level of opened sub-outlines in the
default view. The deeper levels can be opened by mouse click on the triangle symbol after that.

If you are using a special unprotected macro in section titles then \outlines macro may
crash. You must declare a variant of the macro for outlines case which is expandable. Use
\regmacro in this case. See the section 1.5.1 for more information about \regmacro

The command \insertoutline{(text)} inserts a next entry into PDF outlines at the main
level 0. These entries can be placed before the table of contents (created by \outlines) or after
it. Their hyperlink destination is in the place where the \insertoutline macro is used.

The command \thisoutline{(text)} uses (text) in the outline instead of default title text
for the first following \chap, \sec, or \secc. Special case: \thisoutline{\relax} doesn’t
create any outline for the following \chap, \sec, or \secc

1.4.5 Lists

The list of items is surrounded by \begitems and \enditems commands. The asterisk (*) is
active within this environment and it starts one item. The item style can be chosen by the
\style parameter written after \begitems:

\style o % small bullet
\style 0 % big bullet (default)
\style - % hyphen char

\style n % numbered items 1., 2., 3.,
\style N % numbered items 1), 2), 3),
\style i % numbered items (i), (ii), (iii),
\style I % numbered items I, II, III, IV,
\style a % items of type a), b), c),

4 More exactly, there are the same rules as for \code command, see section 1.4.7.

13

http://www.olsak.net
http://petr.olsak.net/optex

\style A % items of type A), B), C),

\style x % small rectangle

\style X % big rectangle

\style d % definition list, use *{word}, see OpTeX trick 0108

For example:

\begitems

* First idea

* Second idea in subitems:
\begitems \style i
* First sub-idea
* Second sub-idea
* Last sub-idea
\enditems

* Finito

\enditems

produces:

o First idea
e Second idea in subitems:
(i) First sub-idea
(ii) Second sub-idea
(iii) Last sub-idea

e Finito

Another style can be defined by the command \sdef{_item: (style)}{(text)}. Default item
can be set by \defaultitem={(text)}. The list environments can be nested. Each new level of
items is indented by next multiple of \iindent value which is set to \parindent by default.
The \ilevel register says what level of items is currently processed. Each \begitems starts
\everylist tokens register. You can set, for example:

\everylist={\ifcase\ilevellor \style X \or \style x \else \style - \fi}

You can say \begitems \novspaces if you don’t want vertical spaces above and below the
list. The nested item list is without vertical spaces automatically. More information about the
design of lists of items should be found in the section 2.27.

A “selected block of text” can be surrounded by \begblock...\endblock. The default
design of blocks of text is indented text in smaller font. The blocks of text can be nested.

1.4.6 Tables

The macro \table{(declaration)}{(data)} provides similar (declaration) of tables as in HTEX:
you can use letters 1, r, c, each letter declares one column (aligned to left, right, center,
respectively). These letters can be combined by the | character (vertical line). Example

\table{||1lclr||}{ \crl
Month & commodity & price \crli \tskip2pt
January & notebook & \$ 700 \cr
February & skateboard & \$ 100 \cr
July & yacht & k\$ 170 \crl}

generates the result:

14

http://petr.olsak.net/optex/optex-tricks.html#deflists

Month commodity price

January notebook $ 700
February skateboard | $ 100
July yacht k$ 170

Apart from 1, r, ¢ declarators, you can use the p{(size)} declarator which declares the
column with paragraphs of given width. More precisely, a long text in the table cell is printed
as a multiline paragraph with given width. By default, the paragraph is left-right justified. But
there are alternatives:

p{(size)\fL} fit left, i.e. left justified, ragged right,

p{(size)\fR} fit right, i.e. right justified, ragged left,

p{(size)\fC} fit center, i.e. ragged left plus right,

p{(size)\£S} fit special, short one-line pararaph centered, long paragraph normal,
p{(size)\£X} fit extra, left-right justified but last line centered.

You can use ({text)) in the (declaration). Then this text is applied in each line of the table.
For example r (\kern10pt)1 adds more 10 pt space between r and 1 rows.

An arbitrary part of the (declaration) can be repeated by a (number) prefixed. For example
3c means ccc or ¢ 3{|c} means clclclc. Note that spaces in the (declaration) are ignored
and you can use them in order to more legibility.

The command \cr used in the (data) part of the table is generally known from Plain TEX.
It marks the end of each row in the table. Moreover OpTEX defines following similar commands:

e \crl ... the end of the row with a horizontal line after it.

e \crll ... the end of the row with a double horizontal line after it.

e \crli ... like \crl but the horizontal line doesn’t intersect the vertical double lines.

e \crlli ... like \crli but horizontal line is doubled.

e \crlp{(list)} ... like \crli but the lines are drawn only in the columns mentioned in

comma-separated (list) of their numbers. The (list) can include (from)-(to) declarators, for
example \crlp{1-3,5} is equal to \crlp{1,2,3,5}.

The \tskip(dimen) command works like the \noalign{\vskip(dimen)} immediately after
\cr* commands but it doesn’t interrupt the vertical lines.
You can use the following parameters for the \table macro. Default values are listed too.

\everytable={} % code used in \vbox before table processing
\thistable={} % code used in \vbox, it is removed after using it
\tabiteml={\enspace}) left material in each column
\tabitemr={\enspace} % right material in each column

\tabstrut={\strut} % strut which declares lines distance in the table

\tablinespace=2pt % additional vert. space before/after horizontal lines
\vvkern=1pt % space between lines in double vertical line
\hhkern=1pt % space between lines in double horizontal line
\tabskip=0pt % space between columns

\tabskipl=0Opt \tabskipr=0pt 7, space before first and after last column

Example: if you do \tabiteml={$\enspace}\tabitemr={\enspace$} then the \table acts
like ATEX’s array environment.

If there is an item that spans to more than one column in the table then the macro
\multispan{(number)} (from Plain TEX) can help you. Another alternative is the command
\mspan(number) [{declaration)]{(text)} which spans (number) columns and formats the (text)
by the (declaration). The (declaration) must include a declaration of only one column with the
same syntax as common \table (declaration). If your table includes vertical rules and you want

15

to create continuous vertical rules by \mspan, then use rule declarators | after c, 1 or r letter in
\mspan (declaration). The exception is only in the case when \mspan includes the first column
and the table have rules on the left side. The example of \mspan usage is below.

The \frame{(tert)} makes a frame around (text). You can put the whole \table into
\frame if you need double-ruled border of the table. Example:

\frame{\table{lc||1||r|}{ \crl
\mspan3[|c|]J{\bf Title} \crl \noalign{\kern\hhkern}\crli
first & second & third \crlli
seven & eight & nine \crlil}}

creates the following result:

Title

first | second || third

seven | eight nine

The \vspan(number){(text)} shifts the (text) down in order it looks like to be in the center
of the (number) lines (current line is first). You can use this for creating tables like in the
following example:

\thistable{\tabstrut={\vrule height 20pt depth1Opt widthOpt}

\baselineskip=20pt \tablinespace=0pt \rulewidth=.8pt}
\table{|8{c|}}{\crlp{3-8}

\mspan2[c|]{} & \mspan3[c|]{Singular} & \mspan3[c|]{Plural} \crlp{3-8}
\mspan2 [c|]{} & Neuter & Masculine & Feminine & Masculine & Feminine & Neuter \crl
\vspan2{I} & Inclusive & \mspan3[c|]{\vspan2{0}} & \mspan3[c|]{X} \crlp{2,6-8}
& Exclusive & \mspan3[c|]{} & \mspan3[c|]{X} \crl
\vspan2{II} & Informal & \mspan3[c|]{X} & \mspan3[c|]{X} \crlp{2-8}
& Formal & \mspan6[c|]{X} \crl
\vspan2{III} & Informal & \vspan2{0} & X & X & \mspan2[c|]{X} &\vspan2{0} \crlp{2,4-7}
& Formal & & \mspan4[c|]{X} & \crl
}
Singular Plural
You can use \Vspan Wlth non_lnteger parame_ Neuter | Masculine | Feminine | Masculine | Feminine | Neuter
ter too if you feel that the result looks better, for — .
example \vspan2.1{text}. O — 0
The rule width of tables and implicit width of Peluive *
all \vrules and \hrules can be set by the com- | |™™ X X
mand \rulewidth=(dimen). The default value Formal X
given by TE}(is 0.4 pt Informal X ‘ X ‘ X
. I 0)
The ¢, 1, r and p are default “declaration Formal X

letters” but you can define more such letters by
\def_tabdeclare(letter){(left)##(right)}. More about it is in technical documentation in
section 2.30.5. See the definition of the _tabdeclarec macro, for example.

The : columns boundary declarator is described in section 2.30.1. The tables with given
width can be declared by to(size) or pxto(size). More about it is in section 2.30.3. Many tips
about tables can be seen on the site http://petr.olsak.net/optex/optex-tricks.html.

1.4.7 Verbatim

The display verbatim text have to be surrounded by the \begtt and \endtt couple. The
in-line verbatim have to be tagged (before and after) by a character which is declared by
\verbchar(char). For example \verbchar™ declares the character ~ for in-line verbatim
markup. And you can use “\relax for verbatim \relax (for example). Another alternative
of printing in-line verbatim text is \code{(text)} (see below).

16

http://petr.olsak.net/optex/optex-tricks.html

If the numerical register \ttline is set to the non-negative value then display verbatim
will number the lines. The first line has the number \ttline+1 and when the verbatim ends
then the \ttline value is equal to the number of the last line printed. Next \begtt...\endtt
environment will follow the line numbering. OpTEX sets \ttline=-1 by default.

The indentation of each line in display verbatim is controlled by \ttindent register. This
register is set to the \parindent by default. Users can change the values of the \parindent
and \ttindent independently.

The \begtt command starts the internal group in which the catcodes are changed. Then the
\everytt tokens register is run. It is empty by default and the user can control fine behavior by
it. For example, the catcodes can be re-declared here. If you need to define an active character
in the \everytt, use \adef as in the following example:

\everytt={\adef!{?}\adef?{!}}

\begtt

Each occurrence of the exclamation mark will be changed to
the question mark and vice versa. Really? You can try it!
\endtt

The \adef command sets its parameter as active after the parameter of \everytt is read. So
you don’t have to worry about active categories in this parameter.

There is an alternative to \everytt named \everyintt which is used for in-line verbatim
surrounded by an \verbchar or processed by the \code command.

The \everytt is applied to all \begtt...\endtt environments (if it is not declared in a
group). There are tips for such global \everytt definitions here:

\everytt={\typosize[9/11]} 7, setting font size for verbatim
\everytt={\ttline=0} % each listing will be numbered from one
\everytt={\visiblesp} % visualization of ;spaces

If you want to apply a special code only for one \begtt...\endtt environment then don’t
set any \everytt but put desired material at the same line where \begtt is. For example:

\begtt \adef!{?}\adef?{!}
Each occurrence of ? will be changed to ! and vice versa.
\endtt

The in-line verbatim surrounded by a \verbchar doesn’t work in parameter of macros and
macro definitions. (It works in titles declared by \chap, \sec etc. and in \fnotes, because these
macros are specially defined in OpTEX). You can use more robust command \code{(text)} in
problematic situations, but you have to escape the following characters in the (text): \, #, %,
braces (if the braces are unmatched in the (text)), and space or ~ (if there are more than one
subsequent spaces or ~ in the (text)). Examples:

\code{\\text, \%\#} ... prints \text, %#

\code{@{..}*&"$ $} ... prints @{..}*&"$ $ without escaping, but you can
escape these characters too, if you want.

\code{a \ b} ... two spaces between a b, the second must be escaped

\code{xy\{z} ... xy{z ... unbalanced brace must be escaped

\code{"\"M} ... prints ~"M, the second ~ must be escaped

You can print verbatim listing from external files by the \verbinput command. Examples:

\verbinput (12-42) program.c % listing from program.c, only lines 12-42
\verbinput (-60) program.c % print from begin to the line 60
\verbinput (61-) program.c % from line 61 to the end

\verbinput (-) program.c % whole file is printed

17

\verbinput (70+10) program.c % from line 70, only 10 lines printed

\verbinput (+10) program.c % from the last line read, print 10 lines
\verbinput (-5+7) program.c J from the last line read, skip 5, print 7
\verbinput (+) program.c % from the last line read to the end

You can insert additional commands for \verbinput before the first opening bracket. They
are processed in the local group. For example, \verbinput \hsize=20cm (-) program.c.

The \ttline influences the line numbering by the same way as in \begtt...\endtt envi-
ronment. If \ttline=-1 then real line numbers are printed (this is the default). If \ttline<-1
then no line numbers are printed.

The \verbinput can be controlled by \everytt, \ttindent just like in \begtt...\endtt.

The \begtt...\endtt pair or \verbinput can be used for listings of codes. Automatic syntax
highlighting is possible, for example \begtt \hisyntax{C} activates colors for C programs. Or
\verbinput \hisyntax{HTML} (-) file.html can be used for HTML or XML codes. OpTEX
implements C, Lua, Python, TEX, HTML and XML syntax highlighting. More languages can
be declared, see the section 2.28.2.

If the code is read by \verbinput and there are comment lines prefixed by two characters
then you can set them by \commentchars(first)(second). Such comments are fully interpreted
by TEX (i.e. not verbatim). Section 2.28.1 (page 144) says more about this feature.

1.5 Autogenerated lists

1.5.1 Table of contents

The \maketoc command prints the table of contents of all \chap, \sec and \secc used in the
document. These data are read from the external *.ref file, so you have to run TEX more than
once (typically three times if the table of contents is at the beginning of the document).

Typically, we don’t want to repeat the name of the section “Table of contents” in the table
of contents again. The direct usage of \chap or \sec isn’t recommended here because the table
of contents is typically not referenced to itself. You can print the unnumbered and unreferenced
title of the section like this:

\nonum\notoc\sec Table of Contents

If you need a customization of the design of the TOC, read the section 2.24.

If you are using a special macro in section or chapter titles and you need different behavior of
such macro in other cases then use \regmacro{(case-toc)}{(case-mark)}{(case-outline)}. The
parameters are applied locally in given cases. The \regmacro can be used repeatedly: then its
parameters are accumulated (for more macros). If a parameter is empty then original definition
is used in given case. For example:

% default value of \mylogo macro used in text and in the titles:

\def\mylogo{\leavevmode\hbox{{\Red\it My}{\setfontsize{magl.5}\rm Lo}Gol}}

% another variants:

\regmacro {\def\mylogo{\hbox{\Red My\Black LoGo}}} % used in TOC
{\def\mylogo{\hbox{{\it My}\/LoGo}}} % used in running heads
{\def\mylogo{MyLoGo}} % used in PDF outlines

1.5.2 Making the index

The index can be included in the document by the \makeindex macro. No external program is
needed, the alphabetical sorting is done inside TEX at macro level.

The \ii command (insert to index) declares the word separated by the space as the index
item. This declaration is represented as an invisible item on the page connected to the next

18

visible word. The page number of the page where this item occurs is listed in the index entry.
So you can type:

The \ii resistor resistor is a passive electrical component
You don’t have to double the word if you use the \iid instead of \ii:

The \iid resistor is a passive electrical component
or:
Now we'll deal with the \iid resistor .

Note that the dot or comma has to be separated by space when \iid is used. This space
(before dot or comma) is removed by the macro in the current text.
The multiple-words entries are commonly arranged in the index as follows:

linear dependency 11, 40-50
— independency 12, 42-53
— space 57, 76

— subspace 58

To do this you have to declare the parts of the index entries by the / separator. Example:

{\bf Definition.}
\ii linear/space,vector/space
{\em Linear space} (or {\em vector space}) is a nonempty set of...

The number of the parts of one index entry (separated by /) is unlimited. Note, that you
can spare your typing by the comma in the \ii parameter. The previous example is equivalent
to \ii linear/space \ii vector/space .

Maybe you need to propagate to the index the similar entry to the linear/space in the form
of space/linear. You can do this by the shorthand ,@ at the end of the \ii parameter. Example:

\ii linear/space,vector/space,@
is equivalent to:
\ii linear/space,vector/space \ii space/linear,space/vector

If you really need to insert the space into the index entry, write ~.

The \ii or \iid commands can be preceded by \iitype (letter), then such reference
(or more references generated by one \ii) has the specified type. The page numbers of such
references should be formatted specially in the index. OpTgEX implements only \iitype b,
\iitype i and \iitype u: the page number in bold or in italics or underlined is printed in the
index when these types are used. The default index type is empty, which prints page numbers
in normal font. The TEXbook index is a good example.

The \makeindex creates the list of alphabetically sorted index entries without the title of
the section and without creating more columns. OpTEX provides other macros \begmulti and
\endmulti for more columns:

\begmulti (number of columns)
(text)
\endmulti

The columns will be balanced. The Index can be printed by the following code:

\sec Index
\begmulti 3 \makeindex \endmulti

Only “pure words” can be propagated to the index by the \ii command. It means that
there cannot be any macro, TEX primitive, math selector, etc. But there is another possibility
to create such a complex index entry. Use “pure equivalent” in the \ii parameter and map this

19

equivalent to a real word that is printed in the index. Such mapping is done by \iis command.
Example:

The \ii chiquadrat χ-quadrat method is ...
If the \ii relax “\relax command is used then \TeX/ is relaxing.

\iis chiquadrat {χ-quadrat}
\iis relax {\code{\\relax}}

The \iis (equivalent) {(text)} creates one entry in the “dictionary of the exceptions”. The
sorting is done by the (equivalent) but the (text) is printed in the index entry list.

The sorting rules when \makeindex runs depends on the current language. See section 1.7.1
about languages selection.

1.5.3 BibTgXing

The command \cite [(label)] (or \cite [(label-1), (label-2), . .., (label-n)]) creates the citation
in the form [42] (or [15, 19, 26]). If \shortcitations is declared at the beginning of the
document then continuous sequences of numbers are re-printed like this: [3-5, 7, 9-11]. If
\sortcitations is declared then numbers generated by one \cite command are sorted upward.

If \nonumcitations is declared then the marks instead of numbers are generated depending
on the used bib-style. For example, the citations look like [Now08] or [Nowak, 2008].

The \rcite[(labels)] creates the same list as \cite [{labels)] but without the outer brack-
ets. Example: [\rcite[tbn], pg.~13] creates [4, pg. 13].

The \ecite[(label)]1{(text)} prints the (text) only, but the entry labeled (label) is decided
as to be cited. If \hyperlinks is used then (text) is linked to the references list.

You can define alternative formating of \cite command. Example:

\def\cite[#1]{(\rcite[#1])} % \cite[(label)] creates (27)
\def\cite [#11{$"{\rcite[#11}$} % \cite[(label)] creates™ {27}

The numbers printed by \cite correspond to the same numbers generated in the list of
references. There are two possibilities to generate this references list:

e Manually using \bib[(label)] commands.
e By \usebib/(type) ((style)) (bib-base) command which reads *.bib files directly.

Note that another two possibilities documented in OPmac (using external BibTEX program)
isn’t supported because BibTEX is an old program that does not support Unicode. And Biber
seems to be not compliant with Plain TEX.

References created manually using \bib[(label)] command.

\bib [tbn] P. 018ak. {\it\TeX{}book naruby.} 468~s. Brno: Konvoj, 1997.
\bib [tst] P. 013ak. {\it Typograficky systém \TeX.}
269~s. Praha: CSTUG, 1995.

If you are using \nonumcitations then you need to declare the (marks) used by
\cite command. To do it you must use long form of the \bib command in the format
\bib[(label)] = {(mark)}. The spaces around equal sign are mandatory. Example:

\bib [tbn] = {0184k, 2001}
P. 018ak. {\it\TeX{}book naruby.} 468~s. Brno: Konvoj, 2001.

Direct reading of .bib files is possible by \usebib macro. This macro reads and uses macro
package librarian.tex by Paul Isambert. The usage is:

20

\usebib/c ((style)) (bib-base) % sorted by \cite-order (c=cite),

\usebib/s ((style)) (bib-base) % sorted by style (s=style).

% example:

\nocite[*] \usebib/s (simple) op-biblist ¥ prints all from op-biblist.bib

The (bib-base) is one or more *.bib database source files (separated by commas and without
extension) and the (style) is the part of the filename bib-(style) .opm where the formatting of
the references list is defined. OpTEX supports simple or iso690 styles. The features of the
is0690 style is documented in the section 2.32.6 in detail. The \usebib command is more
documented in section 2.32.2.

Not all records are printed from (bib-base) files: the command \usebib selects only such
bib-records which were used in \cite or \nocite commands in your document. The \nocite
behaves as \cite but prints nothing. It tells only that the mentioned bib-record should be
printed in the reference list. If \nocite [*] is used then all records from (bib-base) are printed.

You can create more independent lists of references (you are creating proceedings, for ex-
ample). Use \bibpart {(name)} to set the scope where \cites and references list are printed
(and interconnected) independent of another parts of your document. The \cite labels used
in different parts can be the same and they are not affected. References lists can be created
manualy by \bib or from a database by \usebib. Example:

\bibpart {AA}

...\cite[labelX] ... \cite[labelY] ... % They belong to AA bib-list
\usebib/c (simple) file.bib % generates AA bib-list numbered 1, 2,
% \cite prints [1], [2], ... by bib-list AA
\bibpart {BB}
...\cite[labelZ] ... \cite[labelX] ... % They belong to BB bib-list
\bibnum=0 \usebib/c (simple) my.bib % generates BB bib-list numbered 1, 2,
% \cite prints [1], [2], ... by bib-list BB

By default, \bibpart is empty. So \cites and the references list are conneted using this empty
internal name.

1.6 Graphics

1.6.1 Colors, transparency

OpTEX provides a small number of color selectors: \Blue, \Red, \Brown, \Green, ,
\Cyan, \Magenta, \White,) and \Black. More such selectors can be defined
by setting four CMYK components (using \setcmykcolor), or three RGB components (using
\setrgbcolor) or one grey component (using \setgreycolor). For example

\def \Orange {\setcmykcolor{0 0.5 1 0}}
\def \Purple {\setrgbcolor{1l 0 1}}
\def \DarkGrey {\setgreycolor{.1}}

The color selectors work locally in groups like font selectors.

The command \morecolors reads more definitions of color selectors from the ITEX file
x11nam.def. There are about 300 color names like \DeepPink, \Chocolate etc. If there are
numbered variants of the same name, then the letters B, C, etc. are appended to the name in
OpTEX. For example \Chocolate is Chocolatel, \ChocolateB is Chocolate2 etc.

The basic colors \Blue, \Red, \Cyan, \Yellow etc. are defined with CMYK components
using \setcmykcolor. On the other hand, you can define a color with three RGB components
and \morecolors defines such RGB colors. By default, the color model isn’t converted but only
stored to PDF output for each used color. Thus, there may be a mix of color models in the
PDF output which is not a good idea. You can overcome this problem by declaration \onlyrgb

21

or \onlycmyk. Then only the selected color model is used for PDF output and if a used color is
declared by another color model then it is converted. The \onlyrgb creates colors more bright
(usable for computer presentations). On the other hand, CMYK makes colors more true® for
printing.

You can define your color by a linear combination of previously defined colors using
\colordef. For example:

\colordef \myCyan {.3\Green + .5\Blue} % 30 % green, 50 % blue, 20% white
\colordef \DarkBlue {\Blue + .4\Black} % Blue mixed with 40 % of black
\colordef \myGreen{\Cyan+\Yellow} % exact the same as \Green
\colordef \MyColor {.3\Orange+.5\Green+.2\Yellow}

The linear combination is done in CMYK subtractive color space by default (RGB colors used
in \colordef argument are converted first). If the resulting component is greater than 1 then
it is truncated to 1. If a convex linear combination (as in the last example above) is used then it
emulates color behavior on a painter’s palette. You can use \rgbcolordef instead of \colordef
if you want to mix colors in the additive RGB color space. If \onlyrgb is set then \colordef
works like \rgbcolordef.

The following example defines the macro for colored text on colored background. Usage:
\coloron(background) (foreground){{text)}

The \coloron macro can be defined as follows:

\def\coloron#1#2#3{/,

\setbox0=\hbox{#2#3}/,

\leavevmode \rlap{#1i\strut \vrule width\wd0}\boxO
}

\coloron\Yellow\Brown{Brown text on yellow background}

The \transparency(number) sets the transparency amount of following typesetting mate-
rial until the current group is closed. The (number) must be in the range 0..255, zero means no
transparency (solid objects), 255 means full transparency (invisible objects). You can see the
effect when overlapping one object over another.

1.6.2 Images

The \inspic {(filename).(extension)} or \inspic (filename).(extension)(space) inserts the
picture stored in the graphics file with the name (filename) . (extension) to the document. You
can set the picture width by \picw=(dimen) before \inspic command which declares the width
of the picture. The image files can be in the PNG, JPG, JBIG2 or PDF format.

The \picwidth is an equivalent register to \picw. Moreover, there is an \picheight
register which denotes the height of the picture. If both registers are set then the picture will
be (probably) deformed.

The image files are searched in \picdir. This token list is empty by default, this means
that the image files are searched in the current directory. Example: \picdir={img/} supposes
that image files are in img subdirectory. Note: the directory name must end by / in the \picdir
declaration. More parameters can be inclued using the \picparams token list.

Inkscape® is able to save a picture to PDF and labels of the picture to another file”. This
second file should be read by TEXto print labels in the same font as document font. OpTEX
supports this feature by \inkinspic {(filename).pdf} command. It reads and displays both:
PDF image and labels generated by Inkscape.

If you want to create vector graphics (diagrams, schema, geometry skicing) then you can
do it by Wysiwyg graphics editor (Inkscape, Geogebra for example), export the result to PDF

5 Printed output is more equal to the monitor preview especially if you are using ICC profile for your printer.
6 A powerful and free Wysiwyg editor for creating vector graphics.
7 Chose “Omit text in PDF and create LaTeX file” option.

22

and include it by \inspic. If you want to “program” such pictures then Tikz package is
recommended. It works in Plain TEX and OpTEX.

1.6.3 PDF transformations

All typesetting elements are transformed by linear transformation given by the current
transformation matrix. The \pdfsetmatrix {(a) (b) (c¢) (d)} command makes the internal
multiplication with the current matrix so linear transformations can be composed. One linear
transformation given by the \pdfsetmatrix above transforms the vector [0,1] to [(a), (b)]
and [1,0] to [(c),(d)]. The stack-oriented commands \pdfsave and \pdfrestore gives a
possibility of storing and restoring the current transformation matrix and the position of
the current point. This position has to be the same from TgEX’s point of view as from
the transformation point of view when \pdfrestore is processed. Due to this fact the
\pdfsave\rlap{(transformed text)}\pdfrestore or something similar is recommended.
OpIEX provides two special transformation macros \pdfscale and \pdfrotate:

\pdfscale{(horizontal-factor)}{(vertical-factor)}
\pdfrotate{{angle-in-degrees)}

These macros simply call the properly \pdfsetmatrix command.
It is known that the composition of transformations is not commutative. It means that the
order is important. You have to read the transformation matrices from right to left. Example:

First: \pdfsave \pdfrotate{30}\pdfscale{-2}{2}\rlap{texti}\pdfrestore
% textl is scaled two times and it is reflected about vertical axis
% and next it is rotated by 30 degrees left.
second: \pdfsave \pdfscale{-2}{2}\pdfrotate{30}\rlap{text2}\pdfrestore
% text2 is rotated by 30 degrees left then it is scaled two times
% and reflected about vertical axis.
third: \pdfsave \pdfrotate{-15.3}\pdfsetmatrix{2 0 1.5 2}\rlap{text3}’
\pdfrestore % first slanted, then rotated by 15.3 degrees right

This gives the following result. F1§§§ secon?%hlrd. f@/f’ < <

You can see that TEX knows\ﬁothing about dimensions of transformed material, it treats
it as with a zero dimension object. The \transformbox{(transformation)}{(text)} macro
solves the problem. This macro puts the transformed material into a box with relevant di-
mensions. The (transfromation) parameter includes one or more transformation commands
\pdfsetmatrix, \pdfscale, \pdfrotate with their parameters. The (text) is transformed
text.

Example: \frame{\transformbox{\pdfscale{1}{1.5}\pdfrotate{-10}}{moj}} creates

Ioj|
The \rotbox{(deg)}{(text)} is shortcut for \transformbox{\pdfrotate{(deg)}}{(text)}.

1.6.4 Ovals, circles

The \inoval{(text)} creates a box like this: (text]. Multiline text can be put in an oval by the
command \inoval{\vbox{(text)}}. Local settings can be set by \inoval [(settings)]{(text)}
or you can re-declare global settings by \ovalparams={(settings)}. The default settings are:

\ovalparams={\roundness=2pt % diameter of circles in the corners
\fcolor=\Yellow % color used for filling oval
\1lcolor=\Red % line color used in the border
\1lwidth=0.5bp % line width in the border

23

\shadow=N % use a shadow effect
\overlapmargins=N % ignore margins by surrounding text
\hhkern=0pt \vvkern=0pt} ’, left-righ margin, top-bottom margin

The total distance from text to oval boundary is \hhkern+\roundness at the left and right
sides and \vvkern+\roundness at the top and bottom sides of the text.

If you need to set a parameters for the (text) (color, size, font etc.), put such setting right
in front of the (text): \inoval{(text settings) (text)}.

The \incircle[\ratio=1.8]{(text)} creates a box like this . The \ratio parameter
means width/height. The usage is analogical like for oval. The default parameters are

\circleparams={\ratio=1 \fcolor=\Yellow \lcolor=\Red \lwidth=0.5bp
\shadow=N \overlapmargins=N \hhkern=2pt \vvkern=2pt}

The macros \clipinoval (z) (y) (width) (height) {(text)} and \clipincircle (with the
same parameters) print the (text) when a clipping path (oval or cirle with given (with) and
(height) shifted its center by (z) to right and by (y) to up) is used. The \roundness=5mm is
default for \clipinoval and user can change it. Example:

\clipincircle 3cm 3.5cm 6cm 7cm {\picw=6cm \inspic{myphoto.jpg}t}
1.6.5 Putting images and texts wherever

The \puttext (z) (y) {(text)} puts the (text) shifted by (z) right and by (y) up from the
current point of typesetting and does not change the position of the current point. Assume a
coordinate system with origin in the current point. Then \puttext (z) (y) {(text)} puts the
text at the coordinates (x), (y). More exactly the left edge of its baseline is at that position.

The \putpic (z) (y) (width) (height) {(image-file)} puts an image given by (image-file)
(including extension) of given (width) and (height) at given position (its left-bottom corner).
You can write \nospec instead (width) or (height) if this parameter is not specified.

1.7 Others

1.7.1 Using more languages

OpTEX prepares hyphenation patterns for all languages if such patterns are available in your
TEX system. Only USenglish patterns (original from Plain TEX) are preloaded. Hyphenation
patterns of all other languages are loaded on demand when you first use the \(lang-id)lang
command in your document. For example \delang for German, \cslang for Czech, \pllang
for Polish. The (lang-id) is a shortcut of the language (mostly from ISO 639-1). You can list
all available languages including their (lang-id)’s by the \langlist macro. It prints now:
en(USEnglish) enus(USenglishmax) engb(UKenglish) be(Belarusian) bg(Bulgarian) ca(Catalan) hr(Croatian) cs(Czech)
da(Danish) nl(Dutch) et(Estonian) fi(Finnish) fis(schoolFinnish) fr(French) de(nGerman) deo(oldGerman) gsw(swiss-
German) elm(monoGreek) elp(Greek) gre(ancientGreek) hu(Hungarian) is(Icelandic) ga(Irish) it(Italian) la(Latin)
lac(classicLatin) lal(liturgicalLatin) lv(Latvian) lt(Lithuanian) mk(Macedonian) pl(Polish) pt(Portuguese) ro(Ro-
manian) rm(Romansh) ru(Russian) srl(Serbian) src(SerbianCyrl) sk(Slovak) sl(Slovenian) es(Spanish) sv(Swedish)
uk(Ukrainian) cy(Welsh) af(Afrikaans) hy(Armenian) as(Assamese) eu(Basque) bn(Bengali) nb(Bokmal) cop(Coptic)
cu(churchslavonic) eo(Esperanto) ethi(Ethiopic) fur(Friulan) gl(Galician) ka(Georgian) gu(Gujarati) hi(Hindi)
id(Indonesian) ia(Interlingua) kn(Kannada) kmr(Kurmanji) ml(Malayalam) mr(Marathi) mn(Mongolian) nn(Nynorsk)
oc(Occitan) or(Oriya) pi(Pali) pa(Panjabi) pms(Piedmontese) zh(Pinyin) sa(Sanskrit) ta(Tamil) te(Telugu) th(Thai)
tr(Turkish) tk(Turkmen) hsb(Uppersorbian) he(Hebrew)

For compatibility with e-plain macros, there is the command \uselanguage{(language)}.
The parameter (language) is long-form of language name, i.e. \uselanguage{Czech} works the
same as \cslang. The \uselanguage parameter is case insensitive.

For compatibility with Cgplain, there are macros \ehyph, \chyph, \shyph which are equiv-
alent to \enlang, \cslang and \sklang.

24

You can switch between language patterns by \(iso-code)lang commands mentioned above.
Default is \enlang.

OpTEX generates three phrases used for captions and titles in technical articles or books:
“Chapter”, “Table” and “Figure”. These phrases need to be known in used language and
it depends on the previously used language selectors \(iso-code)lang. OpTEX declares these
words only for few languages: Czech, German, Spanish, French, Greek, Italian, Polish, Russian,
Slovak, Hebrew and English, If you need to use these words in other languages or you want
to auto-generate more words in your macros, then you can declare it by \sdef or _langw
commands as shown in section 2.37.2.

The \makeindex command needs to know the sorting rules used in your language. OpTEX
defines only a few language rules for sorting: Czech, Slovak and English. How to declare sorting
rules for more languages are described in the section 2.33.

If you declare \(iso-code)quotes, then the control sequences \" and \' should be used
like this: \"(quoted text)" or \'(quoted text)' (note that the terminating character is the same
but it isn’t escaped). This prints language-dependent normal or alternative quotes around
(quoted text). The language is specified by (iso-code). OpTEX declares quotes only for Czech,
German, Spanish, French, Greek, Italian, Polish, Russian, Slovak and English (\csquotes,
\dequotes, ..., \enquotes). You can simply define your own quotes as shown in section 2.37.2.
The \" is used for quotes visually more similar to the " character which can be primary quotes
or secondary quotes depending on the language rules. Maybe you want to alternate the meaning
of these two types of quotes. Use \(isocode)quotes\altquotes in such case.

1.7.2 Pre-defined styles

OpTEX defines three style-declaration macros \report, \letter and \slides. You can use
them at the beginning of your document if you are preparing these types of documents and you
don’t need to create your own macros.

The \report declaration is intended to create reports. It sets default font size to 11 pt and
\parindent (paragraph indentation) to 1.2em. The \tit macro uses smaller font because we
assume that “chapter level” will be not used in reports. The first page has no page number, but
the next pages are numbered (from number 2). Footnotes are numbered from one in the whole
document. The macro \author (authors)(end-line) can be used when \report is declared. It
prints (authors) in italics at the center of the line. You can separate authors by \nl to more
lines.

The \letter declaration is intended to create letters. See the files op-letter-*.tex for
examples. The \letter style sets default font size to 11 pt and \parindent to Opt. It sets
half-line space between paragraphs. The page numbers are not printed. The \subject macro
can be used, it prints the word “Subject:” or “Véc” (or something else depending on current
language) in bold. Moreover, the \address macro can be used when \letter is declared. The
usage of the \address macro looks like:

\address
(first line of address)
(second line of address)
(etc.)
(

empty line)

It means that you need not use any special mark at the end of lines: the ends of lines in
the source file are the same as in printed output. The \address macro creates \vtop with
address lines. The width of such \vtop is equal to the widest line used in it. So, you can use
\hfill\address... to put the address box to the right side of the document. Or you can use
(prefized text)\address. .. to put (prefized text) before the first line of the address.

25

The \slides style creates a simple presentation slides. See an example in the file
op-slides.tex. Run optex op-slides.tex and see the documentation of \slides style in
the file op-slides.pdf.

Analogical declaration macro \book is not prepared. Each book needs individual typo-
graphical care. You need to create specific macros for design.

1.7.3 Loading other macro packages

You can load more macro packages by \input{(file-name)} or by \load[(file-names)]. The
first case (\input) is TEX primitive command, it can be used in the alternative old syntax
\input (filename)(space) too. The second case (\load) allows specifying a comma-separated
list of included files. Moreover, it loads each macro file only once, it sets temporarily stan-
dard category codes during loading and it tries to load (filename).opm or (filename).tex or
(filename), the first occurence wins. Example:

\load [qrcode, scanbase]

does \input qrcode.opm and and \input scanbase.tex. It saves local information about
the fact that these file names (qrcode, scanbase) were loaded, i.e. next \load will skip them.
It is strongly recommended to use the \load macro for loading external macros if you need
them. On the other hand, if your source document is structured to more files (with individual
chapters or sections), use simply the \input primitive.
The macro packages intended to OpTEX have the name *.opm. The list of packages sup-
ported by OpITEX follows. Most of them are directly part of OpTEX:

math.opm provides usable features for math typesetting and shows how to create new packages.
grcode. opm enables to create QR codes.

tikz.opm does \input tikz.tex, i.e. loads TikZ. It adds OpTEX-specific code.

mte.opm includes settings for microtypographic extensions (protrusions+expanding fonts).
vlna.opm enables to protect of one-letter prepositions and more things automatically.
emoji.opm defines \emoji{({name)} command for colored emoticons.

minim-mp.opm enables \directmetapost using minim-mp and minim packages.

pdfextra.opm allows the use of many extra features from PDF standard (by M. Vlasik).

See these files in optex/pkg/ or optex/(pkgname) for more information about them. The
packages may have their documentation, try texdoc (pkgname).

1.7.4 Lorem ipsum dolor sit

A designer needs to concentrate on the design of the output and maybe he/she needs material
for testing macros. There is the possibility to generate a neutral text for such experiments. Use
\lorem[(number)] or \lorem[(from)-(to)]. It prints a paragraph (or paragraphs) with neutral
text. The numbers (number) or (from), (to) must be in the range 1 to 150 because there are 150
paragraphs with neutral text prepared for you. The \lipsum macro is equivalent to \lorem.
Example: \1ipsum[1-150] prints all prepared paragraphs.

If the dot follows the argument before closing] (for example \1ipsum[3.] or \1ipsum[3.1])
then only first sentence from given paragraph is printed.

1.7.5 Logos

The control sequences for typical logos can be terminated by optional / which is ignored when
printing. This makes logos more legible in the source file:

We are using \TeX/ because it is cool. \OpTeX/ is better than \LaTeX.

26

https://petr.olsak.net/ftp/olsak/optex/math-doc.pdf
https://petr.olsak.net/ftp/olsak/optex/math-doc.pdf#ref:pkgtemplate
http://petr.olsak.net/ftp/olsak/optex/mte-doc.pdf
https://github.com/vlasakm/optex-minim
https://ctan.org/pkg/minim-mp
https://ctan.org/pkg/minim
https://ctan.org/tex-archive/macros/luatex/generic/pdfextra/pdfextra-doc.pdf

1.7.6 The last page

The number of the last page (it may be different from the number of pages) is expanded by
\lastpage macro. It expands to ? in first TEX run and to the last page in next TEX runs.
There is an example for footlines in the format “current page / last page”:

\footline={\hss \fixedrm \folio/\lastpage \hss}

The \lastpage expands to the last \folio which is a decimal number or Roman numeral
(when \pageno is negative). If you need to know the total pages used in the document, use
\totalpages macro. It expands to zero (in first TEX run) or to the number of all pages in the
document (in next TEX runs).

1.7.7 Use OpTEX

The command \useOpTeX (or \useoptex) does nothing in OpTEX but it causes an error (un-
defined control sequence) when another format is used. You can put it as the first command in
your document:

\useOpTeX % we are using OpTeX format, no LaTeX :)

1.7.8 OpTEX tricks

The page OpTEX tricks shows many other features of OpTEX. They are of different nature and
they are typically implemented by short chunks of macro code presented at the page.

Selected macros defiend as an OpTEX trick can be used directly from your document without
copying the code chunks into your macros. It is because these macros are “registered” in OpTEX
(by _regtrick internaly) and if you use such a macro then OpTEX automatically loads the
appropriate code chunk from an external file. These macros are listed here. More information
about them are accesible via the external links.

\algol enables to create pseudocode listings.

\beglua, \beglLUA, \logginglua writing LUA codes as LUA codes.

\cancel prints a given text and the line/cross line over the text.

\createfile, \begfile, \endfile writes a code from the document to the given file.

\colortab colored cells in the table.

\correctvsize sets \vsize to fit lines exactly to pages.

\crtop, \crmid, \crbot specific design of tables: only horozontal rules with different thickness.
\crx alternating colored lines in tables.

\directoutput puts boxes to standalone pages adatped to the box dimesions.

\easylist the depth of list is given by the number of *.

\fcread, \fullcite citations by full bibliographic records.

\framedblocks redefines \begblock, \endblock to create blocks in frames splittable to pages.
\ignoreinspic the \inspic commands stop loading images, they are replaced by gray frames.
\import allows to have subsets of document input files in separate directories.

\ispageodd tests, if the current point is at odd page regardless of asynchronous processing.
\incrpp. \thepp, \thepplast, \truepage does per-page counting of objects.

\keystroke prints given text in a keystroke-like frame.

\longtable alows to break a table to more pages and repeates header.

\makeLOF, \makeLOT, \captionF, \captionT create list of tables and list of figures similar to \maketoc.
\onlyifnew only define a macro if it is not already defined.

\pgforeground adds material to the foreground of each page.

\pstart, \pend dispalys line numbers of the marked text in the margin.

\roundframe colored frames with rounded corners and many options.

\shadedframe colored rectangular frames with simple shadows.

\scaleto, \scaletof text font size changed to the desired width.

\runsystem runs the given external system command.

\secce, \iniseccc implements new level of subsubsections.

\sethours, \setminutes, \setseconds, \setweekday printing time, date, and day of week.
\style m, \keepstyle creates lists with items numbered like subsections.

\settabs, \tabs macros emulate tabulators of old typewriters.

27

https://petr.olsak.net/optex/optex-tricks.html
https://petr.olsak.net/optex/optex-tricks.html#algol
https://petr.olsak.net/optex/optex-tricks.html#beglua
https://petr.olsak.net/optex/optex-tricks.html#beglua
https://petr.olsak.net/optex/optex-tricks.html#beglua
https://petr.olsak.net/optex/optex-tricks.html#cancel
https://petr.olsak.net/optex/optex-tricks.html#begfile
https://petr.olsak.net/optex/optex-tricks.html#begfile
https://petr.olsak.net/optex/optex-tricks.html#begfile
https://petr.olsak.net/optex/optex-tricks.html#colortab
https://petr.olsak.net/optex/optex-tricks.html#correctvsize
https://petr.olsak.net/optex/optex-tricks.html#booktabs
https://petr.olsak.net/optex/optex-tricks.html#booktabs
https://petr.olsak.net/optex/optex-tricks.html#booktabs
https://petr.olsak.net/optex/optex-tricks.html#colorlin
https://petr.olsak.net/optex/optex-tricks.html#directoutput
https://petr.olsak.net/optex/optex-tricks.html#easylist
https://petr.olsak.net/optex/optex-tricks.html#fullcite
https://petr.olsak.net/optex/optex-tricks.html#fullcite
https://petr.olsak.net/optex/optex-tricks.html#greyblock
https://petr.olsak.net/optex/optex-tricks.html#ignoreinspic
https://petr.olsak.net/optex/optex-tricks.html#import
https://petr.olsak.net/optex/optex-tricks.html#ispageodd
https://petr.olsak.net/optex/optex-tricks.html#perpage
https://petr.olsak.net/optex/optex-tricks.html#perpage
https://petr.olsak.net/optex/optex-tricks.html#perpage
https://petr.olsak.net/optex/optex-tricks.html#perpage
https://petr.olsak.net/optex/optex-tricks.html#keystrokes
https://petr.olsak.net/optex/optex-tricks.html#longtable
https://petr.olsak.net/optex/optex-tricks.html#lot
https://petr.olsak.net/optex/optex-tricks.html#lot
https://petr.olsak.net/optex/optex-tricks.html#lot
https://petr.olsak.net/optex/optex-tricks.html#lot
https://petr.olsak.net/optex/optex-tricks.html#onlyifnew
https://petr.olsak.net/optex/optex-tricks.html#pgforeground
https://petr.olsak.net/optex/optex-tricks.html#linnum
https://petr.olsak.net/optex/optex-tricks.html#linnum
https://petr.olsak.net/optex/optex-tricks.html#roundframe
https://petr.olsak.net/optex/optex-tricks.html#shadedframe
https://petr.olsak.net/optex/optex-tricks.html#scaleto
https://petr.olsak.net/optex/optex-tricks.html#scaleto
https://petr.olsak.net/optex/optex-tricks.html#runsystem
https://petr.olsak.net/optex/optex-tricks.html#seccc
https://petr.olsak.net/optex/optex-tricks.html#seccc
https://petr.olsak.net/optex/optex-tricks.html#dayw
https://petr.olsak.net/optex/optex-tricks.html#dayw
https://petr.olsak.net/optex/optex-tricks.html#dayw
https://petr.olsak.net/optex/optex-tricks.html#dayw
https://petr.olsak.net/optex/optex-tricks.html#multilist
https://petr.olsak.net/optex/optex-tricks.html#multilist
https://petr.olsak.net/optex/optex-tricks.html#tabs
https://petr.olsak.net/optex/optex-tricks.html#tabs

\showpglists shows good organized list of nodes of given pages to the log file.
\tabnodes positions of table items are nodes, they can be used for drawing.
\tnote creates notes for table data printed just after the table.

\ttlineref verbatim lines referenced in text.

\vcent, \vbot prints paragraphs in tables verticaly centered or placed at bottom.
\twoblocks allows printing bilingual texts in two columns veritically aligned.

1.8 Summary

\tit Title (terminated by end of line)

\chap Chapter Title (terminated by end of line)
\sec Section Title (terminated by end of line)
\secc Subsection Title (terminated by end of line)

\maketoc % table of contents generation
\ii iteml,item2 ¥ insertion the items to the index
\makeindex % the index is generated

\label [labname] % link target location
\ref [labname] % link to the chapter, section, subsection, equation
\pgref [labname] % link to the page of the chapter, section,

\caption/t % a numbered table caption
\caption/f ¥ a numbered caption for the picture

\egmark % a numbered equation

\begitems % start a list of the items

\enditems % end of list of the items

\begblock % start a block of text

\endblock % end of block of text

\begtt % start a verbatim text

\endtt % end verbatim text

\verbchar X % initialization character X for in-text verbatim
\code % another alternative for in-text verbatim
\verbinput % verbatim extract from the external file
\begmulti num % start multicolumn text (num columns)
\endmulti % end multicolumn text

\cite [labnames] Y% refers to the item in the lits of references
\rcite [labnames] % similar to \cite but [] are not printed.
\sortcitations \shortcitations \nonumcitations % cite format

\bib [labname] % an item in the list of references

\usebib/? (style) bib-base J direct using of .bib file, ? in {s,c}

\load [filenames] % loadaing macro files

\fontfam [FamilyName] % selection of font family

\typosize [font-size/baselineskip] % size setting of typesetting
\typoscale [factor-font/factor-baselineskip] % size scaling
\thefontsize [size] \thefontscale [factor] % current font size

\inspic file.ext % insert a picture, extensions: jpg, png, pdf
\table {rule}{data} % macro for the tables like in LaTeX

\fnote {text} % footnote (local numbering on each page)
\mnote {text} % note in the margin (left or right by page number)

\hyperlinks {color-in}{color-out} % PDF links activate as clickable
\outlines {level} % PDF will have a table of contents in the left tab

\magscale[factor] 7 resize typesetting, line/page breaking unchanged

\margins/pg format (left, right, top, bottom)unit % margins setting
\report \letter \slides 7 style declaration macros

28

https://petr.olsak.net/optex/optex-tricks.html#pglists
https://petr.olsak.net/optex/optex-tricks.html#tnodes
https://petr.olsak.net/optex/optex-tricks.html#tnote
https://petr.olsak.net/optex/optex-tricks.html#ttlineref
https://petr.olsak.net/optex/optex-tricks.html#tablevcent
https://petr.olsak.net/optex/optex-tricks.html#tablevcent
https://petr.olsak.net/optex/optex-tricks.html#twoblocks

1.9 API for macro writers

All TgX primitives and almost all OpTEX macros are accesible by two names: \foo (public or
user namespace) and _foo (private name space). For example \hbox and _hbox means the
same TEX primitive. More about it is documented in section 2.2.1.

If this manual refers \foo then _foo equivalent exists too. For example, we mention the
\addto macro below. The _addto equivalent exists too, but it is not explicitly mentioned here.
If we refer only _foo then its public equivalent does not exist. For example, we mention the
_codedecl macro below, so this macro is not available as \codedecl.

If you are writing a document or macros specific for the document, then use simply public
namespace (\foo). If you are writing more general macros, then you should declare your own
namespace by _namespace macro and you have to follow the naming discipline described in
sections 2.2.1 and 2.2.3.

The alphabetically sorted list of macros typically usable for macro writers follows. More
information about such macros can be found in the technical documentation. You can use
hyperlinks here in order to go to the appropriate place of the technical documentation.

\addto \macro{(text)} adds (tert) at the end of \macro body, \aheadto \macro{(text)} puts (text) at the begin.
\adef (char){(body)} defines (char) active character with meaning (body).

\afterfi {(text)}(ignored)\fi expands to \fi(text).

\basefilename \currfile returns the name of the file currently read.

\bp {(dimen expression)} expands TEX dimension to decimal number in bp without unit.

\casesof (token) (list of cases) expands to a given case by the given (token). See also \qcasesof, \xcasesof.
_codedecl (sequence) {(info)} is used at beginning of macro files.

\colordef \macro {{miz of colors)} declares \macro as color switch.

\cs {(string)} expands \(string).

\cstochar (sequence) converts (sequence) to (character) if there was \let(sequence)=(character).
_doc ... _cod encloses documenation text in the macro code.

\eoldef \macro #1{(body)} defines \macro with parameter separated to end of line.

_endcode closes the part of macro code in macro files.

_endnamespace closes name space declared by _namespace.

\egbox [(label)]1{(text)} creates \hbox{(text)} with common width across whole document.

\expr {(expression)} expands to result of the (expression) with decimal numbers.

\fontdef \f {(font spec.)} declares \f as font switch.

\fontlet \fa=\fb (sizespec.) declares \fa as the same font switch like \fb at given (sizespec.).
\foreach (list)\do (parameters){(what)} is exapandable loop over (list).

\foreachdef \macro (parameters){(what)} declares expandable \macro as loop over (list).

\fornun (from)..(to)\do {(what)} is expanadable loop with numeric variable.

\incr (counter) increases and \decr (counter) decreases (counter) by one globally.

\ignoreit (one), \ignoresecond (one)(two) ignores given parameter.

\expandafter \ignorept \the(dimen) expands to decimal number (dimen) without pt.

\isempty, \istoksempty, \isequal, \ismacro, \isdefined, \isinlist \isfile, \isfont do various tests.
Example: \isinlist\list{(text)}\iftrue does \iftrue if (fezt) is in \list.

\isnextchar (char){(textl)}{(text2)} performs (textl) if next character is (char), else (text2).

\kv {(key)} expands to a value given by key=value. See also \trykv, \iskv, \readkv, \kvx, \nokvx.
\loop ... \repeat is classical Plain TEX loop.

\mathstyles {(math list)} enables to create macros dependent on current math style.

_namespace {(pkg)} declares name space used by package writers.

\newcount, \newdimen etc. are classical Plain TEX allocators.

\newif \iffoo declares boolean \iffoo as in Plain TEX.

_newifi _iffoo declares boolean _iffoo.

\nospaceafter\macro, \nospacefuturelet: they ignore the following optional space.

\opinput {(filename)} reads file like \input but with standard catcodes.

\optdef \macro [(opt-default)] (parameters){(body)} defines \macro with [opt.parameter].
\opwarning {(text)} prints (text) to the terminal and .log file as warning.

\posx [{label)], \posy [{label)], \pospg[(label)] provide coordinates of absolute position of the \setpos[{label)].
\private (sequence) (sequence) ... ; declares (sequence)s for private name space.

\public (sequence) (sequence) ... ; declares (sequence)s for public name space.

\replstring \macro{(stringA)}{(stringB)} replaces all (stringA) to (stringB) in \macro.

\sdef {(string)}(parameters){(body)} behaves like \def\(string)(parameters){(body)}.

\setctable and \restorectable manipulate with stack of catcode tables.

29

\slet {(stringA)}{(stringB)} behaves like \let\(stringA)=\(stringB)

\sxdef {(string)}({parameters){(body)} behaves like \xdef\(string){parameters){(body)}.
\trycs {(string)}{(text)} expands \(string) if it is defined else expands (text).

\useit (one), \usesecond (one)(two) uses given parameter.

\wlog {(text)} writes (tezt) to .log file.

\wterm {(text)} writes (text) to the terminal and .log file.

\xargs (what) (token) (token) ... ; repeats (what){token) for each (token).

1.10 Compatibility with Plain TEX

All macros of Plain TEX are re-written in OpTEX. Common macros should work in the same
sense as in original Plain TEX. Internal control sequences like \f@@t are removed and mostly
replaced by control sequences prefixed by _ (like _this). Only a basic set of old Plain TgX
control sequences like \p@, \z@, \dimen@ are provided but not recommended for new macros.

All primitives and common macros have two control sequences with the same meaning:
in prefixed and unprefixed form. For example \hbox is equal to _hbox. Internal macros of
OpTEX have and use only prefixed form. User should use unprefixed forms, but prefixed forms
are accessible too because the _ is set as a letter category code globally (in macro files and users
document too). Users should re-define unprefixed forms of control sequences without worries
that something internal will be broken.

The Latin Modern 8bit fonts instead Computer Modern T7bit fonts are preloaded in
the format, but only a few ones. The full family set is ready to use after the command
\fontfam[LMfonts] which reads the fonts in OTF format.

Plain TEX defines \newcount, \bye etc. as \outer macros. OpTEX doesn’t set any macro
as \outer. Macros like \TeX, \rm are defined as \protected.

The text accents macros \", \', \v, \u, \=, \~, \., \H, \~, \", \t are undefined® in OpTEX.
Use real letters like &, T, Z in your source document instead of these old accents macros. If you
really want to use them, you can initialize them by the \oldaccents command. But we don’t
recommend it.

The default paper size is not set as the letter with 1in margins but as A4 with 2.5cm
margins. You can change it, for example by \margins/1 letter (1,1,1,1)in. This example
sets the classical Plain TEX page layout.

The origin for the typographical area is not at the top left 1in 1in coordinates but at the
top left paper corner exactly. For example, \hoffset includes directly left margin.

The tabbing macros \settabs and \+ (from Plain TEX) are not defined in OpTEX because
they are obsolete. But you can use the OpTEX trick 0021 if you really need such feature.

The \sec macro is reserved for sections but original Plain TEX declares this control sequence
for math secant®.

1.11 Related documents

e Typesetting math with OpTEX — More details about math typesetting.

e TEX in a Nutshell — Summary about TEX principles, TEX primitive commands etc.
o OpTEX catalog — All fonts collected to \fontfam families are shown here.

e OMLS — OpTEX Markup Language Standard.

e OpTEX - tips, tricks, howto — Tips of macro codes for various purposes.

8 The math accents macros like \acute, \bar, \dot, \hat still work.
9 Use $\secant (x)$ to get sec(z).

30

http://petr.olsak.net/optex/optex-tricks.html#tabs
http://petr.olsak.net/ftp/olsak/optex/optex-math.pdf
http://petr.olsak.net/ftp/olsak/optex/tex-nutshell.pdf
http://petr.olsak.net/ftp/olsak/optex/op-catalog.pdf
http://petr.olsak.net/ftp/olsak/optex/omls.pdf
http://petr.olsak.net/optex/optex-tricks.html

Chapter 2
Technical documentation

This documentation is written in the source files *.opm between the _doc and _cod pairs or after the
_endcode command. When the format is generated by

luatex -ini optex.ini

then the text of the documentation is ignored and the format optex.fmt is generated. On the other
hand, if you run

optex optex-doc.tex

then the same *.opm files are read when the second chapter of this documentation is printed.

A knowledge about TEX is expected from the reader. You can see a short document TEX in a Nutshell
or more detail TEX by topic.

Notices about hyperlinks. If a control sequence is printed in red color in this documentation then
this denotes its “main documentation point”. Typically, the listing where the control sequence is declared
follows immediately. If a control sequence is printed in the blue color in the listing or in the text then it
is an active link that points (usually) to the main documentation point. The main documentation point
can be an active link that points to a previous text where the control sequence was mentioned. Such
occurrences are active links to the main documentation point.

2.1 The main initialization file

The optex.ini file is read as the main file when the format is generated.
optex.ini
%% This is part of the OpTeX project, see http://petr.olsak.net/optex

1

2

3 %% OpTeX ini file

4 %% Petr Olsak <project started from: Jan. 2020>

Category codes are set first. Note that the _ is set to category code “letter”, it can be used as a part of
control sequence names. Other category codes are set as in plain TEX.
optex.ini
6 % Catcodes:
7
8 \catcode “\{=1
9 \catcode ~\}=2
10 \catcode ~\$=3
11 \catcode ~\&=4
12 \catcode ~\#=6
13 \catcode ~\"=7 %
14 \catcode “\""K=7 ¥, circumflex and uparrow are for superscripts
15 \catcode “\""A=8 7, downarrow is for subscripts
16 \catcode “\""I=10 % ascii tab is a blank space
17 \catcode “_=11 % underline can be used in control sequences
18 \catcode “\~=13 % tilde is active
19 \catcode “\""a0=13 % non breaking space in Unicode
20 \catcode 127=12 7% normal character

left brace is begin-group character
right brace is end-group character
dollar sign is math shift

ampersand is alignment tab

hash mark is macro parameter character

= =

I

The \optexversion and \fmtname are defined.
optex.ini
22 % OpTeX version
23
24 \def\optexversion{l.14 Feb 2024}
25 \def\fmtname{OpTeX}
26 \let\fmtversion=\optexversion

We check if LuaTEX engine is used at -ini state. And the ~~J character is set as \newlinechar.

31

http://petr.olsak.net/ftp/olsak/optex/tex-nutshell.pdf
https://eijkhout.net/texbytopic/texbytopic.html

28 7% Engine testing:

30 \newlinechar="\""J
31 \ifx\directlua\undefined

32 \message{This format is based only on LuaTeX, use luatex -ini optex.ini~~J}
33 \endinput \fi
34

35 \ifx\bgroup\undefined \else
36 \message{This file can be used only for format initialisation, use luatex -ini~~J}

37 \endinput \fi

optex.ini

The basic macros for macro file syntax is defined, i.e. _endcode, _doc and _cod. The _codedecl
will be re-defined later.

39 7% Basic .opm syntax:

41 \let_endcode =\endinput
42 \def _codedecl #1#2{\immediate\write-1{#2}}%
43 \long\def_doc#1_cod#2 {} % skip documentation

Individual *.opm macro files are read.

45 % Initialization:

47 \message{OpTeX (Olsak's Plain TeX) initialization <\optexversion>~"J}

49 \input
50 \input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input
\input

=W N

W 00 00 0 0 0 0 0 W W =1 = =~ =1 =1 =7 =] =] =1 =71 & O o0, oo v ot OOt oot Ottt
© 00 1 O U= WK = O OO -1 U W NHFEF O © WO U W~ O OO~ o W,

prefixed.opm
luatex-ini.opm
basic-macros.opm
alloc.opm
if-macros.opm
parameters.opm
more-macros.opm
keyval.opm
plain-macros.opm
fonts-preload.opm
fonts-resize.opm
fonts-select.opm
math-preload.opm
math-macros.opm
unimath-macros.opm
fonts-opmac.opm
output.opm
margins.opm
colors.opm
ref-file.opm
references.opm
hyperlinks.opm
maketoc.opm
outlines.opm
pdfuni-string.opm
sections.opm
lists.opm
verbatim.opm
hi-syntax.opm
graphics.opm
table.opm
multicolumns.opm
cite-bib.opm
makeindex.opm
fnotes.opm
styles.opm
logos.opm
uni-lcuc.opm
languages.opm
lang-decl.opm
others.opm

Y.

%

==

information about .opm file

prefixed primitives and code syntax

LuaTeX initializat
basic macros

allocators for registers
special \if-macros, \is-macros and loops

parameters setting
OpTeX useful macro

key=value dictionaries

plainTeX macros

ion

s (todo: doc)

preloaded Latin Modern fonts
font resizing (low-level macros)

font selection sys

tem

math fams CM + AMS preloaded

basic macros for math plus mathchardefs

macros for loading UnicodeMath fonts
font managing macros from OPmac

output routine

macros for margins setting

colors

ref file
references
hyperlinks
maketoc

PDF outlines

PDFunicode strings for outlines

titles, chapters, sections
lists, \begitems, \enditems

verbatim

syntax highlighting of verbatim listings

graphics
table macro

more columns by \begmulti

Bibliography, \cit

Make index and sorting

\fnotes, \mnotes

styles \report, \letter

standard logos

Setting lccodes and uccodes for Unicode characters

Languages macros
Languages declarat
miscellaneous

e

ion

...\endmulti

optex.ini

optex.ini

The file optex.1lua is embedded into the format as byte-code. It is documented in section 2.39.

32

optex.ini
91 _directlua{

92 % preload OpTeX's Lua code into format as bytecode
93 lua.bytecode[1] = assert(loadfile(kpse.find_file("optex", "lua")))
94 }

The \everyjob register is initialized and the format is saved by the \dump command.
optex.ini
96 _everyjob = {%
97 _message{_banner~"J}%

98 _directlua{lua.bytecode[1]1 ()}} load OpTeX's Lua code

99 _mathsbon % replaces \int_a"b to \int _a’b

100 _inputref J inputs \jobname.ref if exists

101 }

102

103 \dump % You can redefine \dump if additional macros are needed. Example:
104 % \let\dump=\relax \input optex.ini \input mymacros _dump

2.2 Basic principles of OpTEX sources

2.2.1 Concept of namespaces of control sequences

OpTEX sets the category code of the “_” character to 11 (letter) and it is never changed.! So, we can

always construct multiletter control sequence names from letters A-Z, a—z, and _. The “letter _” works

in math mode as a subscript constructor because it is set as math active character (see section 2.15).
We distinguish following namespaces for multiletter control sequences:

e Only alphabetical names are in the public namespace. They are intended for end users when creating
a document. Sometimes it is called user namespace too. For example \hbox, \fontfam, \MyMacro.

e Only alphabetical lowercase names prefixed by single “_” are in the private namespace. It is used in
OpTEX internal macros. For example _hbox, _fontsel.

e Names in the form _{pkg)_(name) are in the package namespace, see section 2.2.3. For example
_qr_size, _math_alist.

e Names starting with two “_” are in the reserved namespace. They can be used for internal control
sequences in font family files or in similar cases.

e Other names which include “_” but not as the first character can be used too, but with care, see the

end of this section.

All TEX primitives are initialized with two control sequences with the same meaning: prefized control
sequence (in private namespace, for example _hbox) and unprefized control sequence (in public names-
pace, for example \hbox). All OpTEX macros intended for end users are initialized in these two forms
too, for example _ref and \ref.

Users can declare any control sequences in the public namespace without worrying that OpTEX
behavior is changed. This is because OpTEX uses exclusively prefixed control sequences in its macros.
For example, a user can declare \def\fi{finito} and nothing bad happens, if the user doesn’t use \fi
in its original primitive meaning. You don’t have to know all TEX primitives and OpTEX macros, you
can declare control sequences for your use in the public namespace without limitations and nothing bad
will happen.

You can use control sequences from private or package namespace in a “read-only manner” without
changing OpTEX behavior too. On the other hand, if you re-define a control sequence in the private name
space, the OpTEX behavior can be changed. You can do it but we suppose that you know what you are
doing and what OpTEX behavior is changed.

All multiletter control sequences declared by OpTEX are defined in the private namespace first
(_def_macroq{...}). If the declared control sequences are intended for end users too then they are
exported to the public namespace after that. It is done by the \public macro:

\public (list of control sequences) ;

For example \public \foo \bar ; does \let\foo=_foo, \let\bar=_bar.

There is an exception of the above mentioned principle. Control sequences which are alternatives to
math characters (\alpha, \forall, \subset etc.) are declared only in public name space if they are not
used in any internal OpTEX macros.

1 This is only singular exception form category codes given by plain TEX.

33

The macro \private does the reverse job of \public with the same syntax. For example
\private \foo \bar ; does \let_foo=\foo, \let_bar=\bar. This should be used when an unpre-
fixed variant of a control sequence is declared already but we need the prefixed variant too.

In this documentation: if both variants of a control sequence are declared (prefixed and unprefixed),
then the accompanying text mentions only the unprefixed variant. The code typically defines the prefixed
variant and then the \public (or _public) macro is used.

The single-letter control sequences like \%, \$, \~ etc. are not used in internal macros. Users can
redefine them, but (of course) some classical features can be lost (printing percent character by \% for
example).

It is very tempting to use control sequence names with _ in order to distinguish more words in the
sequence name. If the first character isn’t _ then such a name is outside private and package namespaces,
so they can be used for various purposes. For example \my_control_sequence. But there is an exception:
control sequences in the form \(word)_ or \(word)_{one-letter), where (word) is a sequence of letters, are
inaccessible, because they are interpreted as \(word) followed by _ or as \(word) followed by _(one-letter).
This feature is activated because we want to write math formulae as in plain TEX, for example:

\int_a"b ... is interpreted as \int _a"b
\max_M ... is interpreted as \max _M
\alpha_{ij} ... is interpreted as \alpha _{ij}

It is implemented using Lua code at input processor level, see the section 2.15 for more details. You can
deactivate this feature by \mathsboff. After this, you can still write $_a~b$ (Unicode) or $\int _a~b$
without problems but \int_a~b yields to undefined control sequence \int_a. You can activate this feature
again by \mathsbon. The effect will take shape from next line read from input file.

2.2.2 Macro files syntax

Segments of OpTEX macros or external macro packages are stored in files with .opm extension (means
OPtex Macros). Your local macros should be in a normal *.tex file.

The code in macro files starts by _codedecl and ends by _endcode. The _endcode is equivalent
for \endinput, so documentation can follow. The _codedecl has syntax:

_codedecl \sequence {(short title) <{version)>}
If the mentioned \sequence is undefined then _codedecl prints the message
@: [(file name)] (short title) <(version)>

to the log file and TEX continues with reading the following macros. If the \sequence is defined, then
_codedecl acts like \endinput: this protects from reading the file twice. We suppose, that \sequence
is defined in the macro file.

It is possible to use the _doc ... _cod pair between the macro definitions. The documentation text
should be here. It is ignored when macros are read.

The _doc ... _cod parts can be printed after \load[doc] using \printdoc macro, see section 2.40.
If you have created a documented macro file pkgname . opm then you can put macros for creating your doc-
umentation between first pair of _doc ... _cod used after _endcode. These macros should \load [doc]
and must be finished by \bye. Then you have code+documentation together in a single file and user can
generate the documentation of your package by \docgen used at command line:

optex -jobname pkgname-doc '\docgen pkgname'

Example of a _doc ... _cod code used for creating the documentation using \docgen can be found in
the math.opm file. You can see its documentation, especially section about creating packages.

2.2.3 Name spaces for package writers

Package writer should use internal names in the form _(pgk)_(sequence), where (pkg) is a package label.
For example: _qr_utfstring from grcode.opm package.

The package writer does not need to write repeatedly _pkg_foo _pkg_bar etc. again and again in
the macro file.> When the _namespace {(pkg)} is declared at the beginning of the macro file then all
occurrences of \.foo will be replaced by _(pkg)_foo at the input processor level. The macro writer can

2 We have not adopted the idea from expl3 language:)

34

https://petr.olsak.net/ftp/olsak/optex/math-doc.pdf
https://petr.olsak.net/ftp/olsak/optex/math-doc.pdf#ref:pkgtemplate

write (and backward can read his/her code) simply with \.foo, \.bar control sequences and _{pkg)_foo,
_{pkg)__bar control sequences are processed internally. The scope of the _namespace command ends
at the _endnamespace command or when another _namespace is used. This command checks if the
same package label is not declared by the _namespace twice.

_nspublic (list of sequences) ; does \let\foo = _(pkg)_foo for each given sequence when
_namespace{(pkg)} is declared. Moreover, it prints a warning if \foo is defined already. The
_nsprivate macro does reverse operation to it without warnings. Example: you can define
\def\.macroq{. ..} and then set it to the public namespace by _nspublic \macro;.

It could happen that a package writer needs to declare a control sequence (say \foo) directly
without setting it in _{pkg)_foo namespace followed by using _nspublic. The \newpublic pre-
fix should be used in this case, for example _newpublic_def\foo or _newpublic_chardef\foo
or _newpublic{_long_def}\foo. The \newpublic(do)\(sequence) prints a warning if the declared
\(sequence) is defined already and then runs (do)\(sequence). The reason of the warning is the same as
when _nspublic warns about doing re-declaration of control sequences already declared.

Don’t load other packages (which are using their own namespace) inside your namespace. Do load
them before your _namespace {(pkg)?} is initialized. Or close your namespace by _endnamespace and
open it again (after other packages are loaded) by _resetnamespace {(pkg)}.

If the package writer needs to declare a control sequence by \newif, then there is an exception
of the rule described above. Use _newifi_if(pkg)_bar, for example _newifi_ifqr_incorner.
Then the control sequences _qr_incornertrue and _qr_incornerfalse can be used (or the sequences
\.incornertrue and \.incornerfalse when _namespace{qr} is used).

2.2.4 Summary about rules for external macro files published for OpTEX

If you are writing a macro file that is intended to be published for OpTEX, then you are greatly welcome.
You should follow these rules:

e Don’t use control sequences from the public namespace in the macro bodies if there is no explicit
and documented reason to do this.

e Don’t declare control sequences in the public namespace if there are no explicit and documented
reasons to do this.

e Use control sequences from OpTEX and primitive namespace in read-only mode, if there is not an
explicit and documented reason to redefine them.

o Use _(pkg)_(nam