
PiTEX
Paul Isambert
zappathustra@free.fr

November 2011

1 Introduction
If you're reading this, either you saw \input pitex at the beginning of the documentation of one
of my packages, or you spend desperate hours browsing CTAN, or you're Arnaud Schmittbuhl.
In any case, you're welcome to use the PiTEX macros, provided that you don't forget that :
nothing is guaranteed ; changes might occur without warning nor retrocompatibility ; the
documentation isn't necessarily up-to-date ; and, if you still want to, you must load PiTEX with
\input pitex on top of plain TEX, using LuaTEX.

What is PiTEX? Originally, it was a set of files I loaded with plain TEX to typeset docu-
mentation for my packages. But it's not just a few macros anymore, but rather a format in
progress. e format might never see the public light, but if it does, its originality (compared
to existing format) will be an organization based on the Gates package : everything will be
highly customizable, not because there are tons of options (although that can be the case
too), but because big operations are divided into gates, i.e. macros with a handle that you
can control without having to rewrite (nor understand) the big operation you're modifying ;
which big operation also keeps its integrity, because removing or adding something is neatly
done. It also means that PiTEX can be changed piecewise, and made into something that
bears little resemblance to the original code. In other words, there is nothing private, nothing
forbidden. For the moment, only sectionning commands and the output routine, plus callback
management in Lua and \everypar, are written with gates. See the Gates documentation for
further information.

Another thing with PiTEX is that it will rely heavily on external packages. ere will be as
little PiTEX-only code as possible. Rather, in line with Gates, each area will be independant code
able to work with other formats. at is no simple task, though, and far from complete. For
instance, the user's interface is made with YaX, which can be used (and is used) elsewhere.

PiTEX uses three types of files : mandatory external packages, i.e. independant code that
PiTEX can't do without, optional external packages, i.e. independant code that can be used,
but is not automatically loaded, and mandatory PiTEX-only files. All mandatory files aren't
necessary to the same degree, though, and in the future switches might be available to load
only some of them. Currently, the files are :

Mandatory external packages
texapi Macros to write independant code.
YaX User's interface (and convenient programming tool)

with key = value style).
Gates Overall architecture for modular code.

Navigator PDF features (links, bookmarks...)
Currently used by sections, but might become
non-mandatory (although strongly recommended).

Mandatory PiTEX files
pitex.tex e main file that inputs the other,

and contains a few macros.
lua.ptx Lua-related macros.
base.ptxlua Lua functions, input in the previous file.
files.ptx Dealing with files.
fonts.ptx Interface for fonts ; relies on the next file.
fonts.ptxlua e Lua fontloader ; should become independant

some day.
foundry-settings.lua Default settings for the fontloader.
sections.ptx Sectionning commands.
blocks.ptx Blocks (delimited text with special formatting).
references.ptx Labels and references.
verbatim.ptx Typesetting verbatim material.
inserts.ptx Footnotes and figures.
output.ptx Page layout and output routine.

e following can be used with PiTEX ; actually I only list the packages I've written, but
anything working with plain TEX (e.g. TikZ) works with PiTEX.

Optional external packages
Librarian To create bibliographies without BibTEX.
Lecturer For screen presentations.
Interpreter To write text with non-TEX markup (as this documentation) ;

Interpreter does the conversion on the fly.

e PiTEX distribution also contains i-pitex.lua, an interpretation file for Interpreter
used to typeset documentations, like the one you are currently reading. Which is why you can
read it quite comfortably as a plain text file in a text editor (see pitex-doc.txt).

e rest of this document is a terse description of existing commands, parameters, and of
course, gates.

2 Fonts (fonts.ptx and fonts.ptxlua)
e fontloader uses gates, but only superficially. ey won't be documented here.

\setfont <command>:<attributes>

Sets <command> to call the font described in <attributes> ; all defaults to the values of the
metafont parameter. If <command> is \mainfont, the font is called at once. Also, \codefont is
used in some places (e.g. verbatim).

name

e family name of the font ; e.g. Chaparral Pro for the main text of this document.
size (dimension)

e size of the font.
small (dimension)

e size of the font when \small is called. Can be a relative value by prefixing it with - or +, in
which case it is set relative to size.

verysmall (dimension)

e size (possibly relative) for \verysmall.
big (dimension)

e size (possibly relative) for \big.
verybig (dimension)

e size (possibly relative) for \verybig.
bold (font modifier)

e modifier used for the bold version of the font, without the leading slash ; metafont sets it
to Bold.

italic (font modifier)

Same as bold for the italic version ; set to Italic by metafont.
math (true or false)

If true, math fonts will be created.
features

Well, err, font features...
slant (angle)

e slant applied to the font to create a fake italic.
slantsc (angle)

e slant applied to the font to create fake italic smallcaps ; if not given, defaults to slant.
ere's actually much more going under the hood, but font.ptxlua (the font loader itself)

is a work in progress, and undocumented.
e samemacros as in plain TEX can be used, except they're cumulative, i.e. \it\bf switches

to a bold italic.
\it

Switches to italics.
\rm

Switches to roman.
\bf

Switches to bold.
\rg

Switches to regular weight.
\sc

Switches to small capitals.
\lc

Switches to lower case (i.e. not small caps).

\ital <text>

Typesets <text> in italics.
\bold <text>

Typesets <text> in bold.
\scap <text>

Typesets <text> in small caps.
\rom <text>

Typesets <text> in roman.
\emph <text>

Typesets <text> in italics or roman, depending on whether the current font is roman or italics,
respectively.

\underline <text>

Underlines <text>. Wow.
\small

Switches to small font.
\verysmall

Switches to very small font.
\big

Switches to big font.
\verybig

Got it ?
\normalsize

Switches to default size.
\smaller

Switches to the font smaller than the current one (e.g. \normalsize if you're currently using
\big).

\bigger

Same as \smaller, the other way around.
\color <color><text>

Typesets <text> with <color>, which should be a triplet R G B with each value between 0 and
1.

3 Sections (sections.ptx)
Sections are among the victims of my fanaticism for grid-typesetting.

3.1 Main sectioning commands
\declaresection <type><level>

Creates a new section type with <level>. is is not necessary to make \sectioncommand work
with <type>, but with it all declared sections of level larger than <level> are reset (i.e. their
counters are set to 0). Sections with <type> chapter, section, subsection and paragraph are
already declared.

\incrementsection <type>

Increments the counter of section <type>. If <type> hasn't been declared, a new <type> is
created, but without a level.

\getsectioncounter <type>

Returns the value of section <type>'s counter, or -1 if there is no section of that type.
\sectioncommand <type><title><alternate title>[<label>]

Creates a section heading of type <type> with <title>. See the details of the gates involved
below. e <type> refers to the parameter of the same name. e <alternate title> is very
likely to disappear.

\chapter <title>[<label>]

Equivalent to \sectioncommandchapter{<title>}{<title>}[<label>].
\section <title>[<label>]

Equivalent to \sectioncommandsection{<title>}{<title>}[<label>].
\subsection <title>[<label>]

Equivalent to \sectioncommandsubsection{<title>}{<title>}[<label>].
\paragraph <title>[<label>]

Equivalent to \sectioncommandparagraph{<title>}{<title>}[<label>].
\ifsectiontitle

A conditional that is true when the section title is being typeset (sets by the section_pre gate
below.

\sectioninfile <optional star><title><space><type><space><file><space>

Creates a section with the contents of a file, unless there's an optional star (useful to typeset
only parts of a big document) ; <title> is a \freedef argument, hence it can be given between
braces, double quotes or slashes (but the <space> is nonetheless mandatory) ; <type> is a
section type, and <file> is a file to be input : it shouldn't have an extension (tex files are
searched), but it can be a path with / as a separator. A \label is also created, with the tail of
<file> as its argument. In other words, the following :

\sectioninfile "A chapter" chapter mydir/myfile

is equivalent to :

\chapter{A chapter}

\label{myfile}

\input mydir/myfile.tex

e \sectioncommand macro only contains a list gate, section, itself containing the gates
typesetting a section heading ; all the gates belong to the Section family associated with the
\Section command. Here are all the gates involved ; the first number between parentheses
indicates how many arguments the gate should receive, the second how many it returns.

section (4, 0) section_break (1, 0) section_vmode (1, 0)
section_clearpage (1, 0)
section_beforeskip (1, 0)

section_advance (1, 0)
section_advance (1, 0)
section_bookmark (4, 0)
section_toc (3, 0)
section_pre (0, 0)
section_typeset (2, 2) section_number (2, 3)

section_heading (3, 2)
section_addfont (2, 2)
section_addcolor (2, 2)
section_do (2, 0)

section_post (0, 0)
section_afterskip (1, 0)

Here's how the gates work :
section <type><title><alternate title><label>

e main list gate that contains all sections. In what follows, when I mention an attribute, I
mean the attribute of the parameter <type>.

section_break <type>

An l-gate managing whatever must happen before the section title is typeset.
section_vmode <type>

Inserts a \par and removes last skip. (Conditional : vmode is true.)
section_clear <type>

Inserts a \clearpage. (Conditional : clear is true.)
section_beforeskip <type>

Creates a vertical skip before the heading. If the current page cannot accommodate beforeskip
+ minimum + afterskip worth of lines, then the section heading is typeset on the next page
(using \breakpage). If the current page can accommodate the section, a skip of beforeskip
lines is inserted. e gate doesn't return anything. (Conditional : clear is not true.)

section_advance <type>

Increments the section counter, and resets the counters of those sections whose level is larger
than <type>'s level (provided <type> has been declared with \declaresection and thus given
a level). e gate doesn't return anything.

section_bookmark <type><title><alternate title><label>

e bookmark is created with Navigator's \outline command as follows :

\outline[meta = <type>bookmark]{<bookmarklevel>}[<label>]{<alternate title>}

only if bookmarklevel is defined. For types chapter, section, subsection and paragraph, the
related chapterbookmark, sectionbookmark, subsectionbookmark and paragraphbookmark

parameters are predefined, with simply meta set to navigator. e <alternate title> is likely
to disappear, since Navigator can handle things correctly. e gate doesn't return anything.
(Conditional : link is true.)

section_toc <type><title><alternate title>

Writes what should be written to the auxiliary file for the next run to produce a table of
contents. e gate doesn't return anything. (Conditional : toc is true.)

section_pre

Prepares the typesetting : open a group, sets \maintextfalse and \sectiontitletrue, and
sets a LuaTEX attribute to 0 (so the section title is marked and can be spotted in the output
routine). e gates doesn't return anything.

section_typeset <type><title>

A list gate containing the gates used to typeset the section heading. It returns its final two
arguments if only because list gate automatically return. See description below.

section_post

Closes the group opened in section_pre. e gate doesn't return anything.
section_afterskip <type>

Creates a vertical skip of afterskip lines. Also, calls \removenextindent if removenextindent
is true. e gate doesn't return anything. (Conditional : inline is not true.)

Here are the gates contained in section_pre. Beware, there the nature of the passed
arguments slightly changes.

section_indent <type>

Goes into horizontal mode and inserts an indent of width indent. e gate doesn't return
anything.

section_number <type><title>

Sets the section number, if number isn't none. e number is surrounded by beforenumber and
afternumber, converted to roman or arabic number according to the value of number, and the
whole is passed to numbercommand (if it exists). e gate returns the following three arguments :
<type><number><title>, where <number> is what's just been described.

section_heading <type><number><title>

Sets the <title> : it is prefixed with <number>, passed to function if it exists, and suffixed with
aftertitle if any. e gate returns <type> and <title> as just described.

section_addfont <type><title>

Prefixes <title> with the value of font and returns its two arguments.
section_addcolor <type><title>

Adds color to the title and returns its two arguments. (Conditional : color is true.)
section_do <type><title>

At last ! Inserts an horizontal skip of width indent, typesets <title>, and if inline isn't true,
sets \rightskip to ragged. Oh, yes, this could be divided into smaller gates. e gates doesn't
return anything.

e relevant parameters are the one corresponding to the type of the section, i.e. chapter,
section, subsection, paragraph, which all have metasection as their meta-parameter. e
relevant attributes are :

vmode (true or false)

If true, goes into vertical mode before typesetting the heading.
clear (true or false)

If true, the section starts on a new page.
beforeskip (glue)

e skip added before the heading.
afterskip (glue)

e skip added after the heading.
minimum (number)

e minimum number of lines that should be present on the page after the section heading.
e section_skip gate above starts a new page if beforeskip + afterskip + minimum can't be
accommodated.

inline (true or false)

If true, the section heading is inserted at the beginning of the following paragraph.
number (arabic, roman or none)

e way the section number should be typeset ; none means the number isn't typeset.
beforenumber

Material to be added before the section number.
afternumber

Material to be added after the section number.
numbercommand (control sequence)

A macro to which the section number (surrounded by beforenumber and afternumber) is
passed.

function (control sequence)

A macro to which the section title is passed.
aftertitle

Material added after the section title.
font

Font for the heading.
color (a triplet of values)

Color for the heading.
indent (glue)

e value of the glue added before the section title.
ragged (glue)

e value of \rightskip for the heading.
toc (true or false)

Sets whether the section should be added to the table of contents or not.
removenextindent (true or false)

Sets whether the next paragraph should be unindented.
link (true or false)

Sets whether a bookmark should be created with the section's title.

bookmarklevel (number)

e level of the bookmark created for the section (how surprising). Further specification of the
bookmark is done with chapterbookmark, sectionbookmark, subsectionbookmark, paragraph-
bookmark, whose only specification is that meta is set to navigator. New <type>bookmark's can
be created, of course. See the documentation of Navigator for advanced use.

3.2 Various commands
\tableofcontents

Writes the table of contents (needs two runs). Not customizable for the time being !
\newbreakpenalty <command>

Defines <command> as a number below -10000, suffixed with a \relax. e idea is to use it to
break a page and check it in the output routine.

\clearpage

Fills the rest of the page with white space.
\clearpagepenalty

Penalty associated with \clearpage.
\breakpage

Same as \clearpage. ey shouldn't be used for the same reasons. I use \clearpage at the
end of a chapter, and \breakpage elsewhere (e.g. when a section heading would be orphaned
and must move to the next page). e latter triggers nothing special, but the former can be
identified in the output routine and for instance suppress footers.

\breakpagepenalty

Penalty associated with \breakpage.
\needspace <dimen>

Moves to the next page if there's less than <dimen>.
\iflines <number><true><false>

Executes <true> if there's at least <number> lines left on the page, and <false> otherwise.
\ignorepars <material>

Ignores incoming \par commands (and spaces too) and executes <material>. Useful when
a blank line looks good in the source but you don't want it to signal a paragraph's end. e
command is used by sectionning commands, so that if the section's title is supposed to be
inserted at the beginning of the next paragraph (e.g. if inline is true), you can nonetheless
leave a blank line after the command.

4 References (references.ptx)
ere is a nice reference system, but it is a mess and should be rewritten in Lua. So it isn't fully
described here.

\label <name>

Sets a label with <name>.
\ref [<pre>][<post>] <reference type> {<name>}

Makes a reference. Beware of the syntax : label should be enclosed between braces, because the

left brace is the delimiter for <reference name>, which in turn should be enclosed in braces.
E.g. a call is :

\ref page {mylabel}

What is returned depends on <reference type>. If it is empty, then what is returned is the value
of \ptx@label when \label{<name>} was issued. I think some commands define \ptx@label
(nice in blocks, for instance). Otherwise, <reference type> can be page, chapter, section,
subsection, paragraph or footnote (the latter if and only if \label was issued in a footnote).
e returned text is prefixed with <pre> and suffixed with <post>.

Also, if <reference type> is page, it may take three runs to make things work, because it
is checked whether the returned value is the current page, in which case nothing is printed (it's
stupid to refer to the current page). As mentioned above, this is a mess.

ere also are commands like \sref{label} and the like, which are shorthands for e.g.
\ref[section~][] section {label}.

5 Blocks (blocks.ptx)
Blocks are what are called environments elsewhere : they mark up a section of the document, and
generally apply some special operations. Given a block myblock, it is launched with \myblock,
closed with \myblock/ and continued with \myblock|. As you might imagine, this implies
poking at the next token, which in some rare case might be troublesome ; hence, \myblock can
be followed by an optional > whose only goal is to protect the next token. (You can also use a
\relax, of course.)

\newblock <optional star><command><pre><optional start><optional middle><post>

Defines <command> as a block. If the first optional star is present, the block is executed inside a
group. If the second optional star is present, then the <middle> argument should be present too.
e block is defined as follow : <pre> is executed at the beginning (i.e. \myblock or \myblock>),
<middle> is executed when the block is continued (i.e. \myblock|), and <post> is executed when
the block is closed (i.e. \myblock/). If <middle> is not given, then \myblock| does nothing. For
instance, the following defines a grouped block (so the \rightskip setting doesn't affect the
rest of the document) ; note the \par at the end, so the paragraph is built before the group is
closed :

\newblock*\raggedblock{\rightskip=0pt plus 1fil\relax}{\par}

And here's a simple example with a middle part :

\newblock\listblock{\vskip\baselineskip– }

*{\par– }

{\vskip\baselineskip}

e continuation part can be used as a partial block opening : some markers are repeated (the
dash) others are not (the vertical space).

\newblocktype <command><pre><middle><post>

Defines <command> as a block definition command like \newblock with <pre>, <middle> and
<post> to be executed by default before the user-supplied versions. e \newblock command
itself has been thus defined, with empty arguments. Arguments, after :

\newblocktype\newlist{\vskip\baselineskip–}

{\par–}

{\vskip\baselineskip}

en \newlist\listblock will have the same definition as in the previous example (no need
to supply a <middle> part, it's in the default), and a variation can be created.

\removenextindent

Removes the indentation box of the next paragraph (used by section macros). Technically, it
sets ajar the noindent gate in the everypar gate list (itself registered in the \everypar token
list, which shouldn't be handled otherwise if flexibility is to be ensured). ose two gates belong
to the Everypar family associated with the \Everypar command.

\Indent

Indents the next paragraph even if it \removenextindent has been issued (a \kern is added).

6 Dealing with files (files.ptx)
\iffile [<format>]<file><true><false>

Executes <true> if kpse.find_file (from the LuaTEX kpse library, implementing kpathsea)
with file type <format> (default : tex), and <false> otherwise.

\ifffile [<format>]<file><true>

Same as \iffile, except nothing happens when the file isn't found. Yes, three f's.
\inputfileor [<format>]<file><no file>

Reads file <file> or executes <no file>.
\writeout <optional star><general text>

Writes <general text> to the auxilary file that is read at the beginning of each job. Without a
star, writing happens at once (it's \immediate), with it writing is delayed until the current page
is shipped out.

7 Verbatim (verbatim.ptx)
\verbcatcodes

A catcode table with usual verbatim catcodes : special characters have catcode 12, except
space and end-of-line, which have catcode 13 and are defined to \quitvmode\spacecs and
\quitvmode\par by default.

\newverbatim <command>[<catcode table>]<pre><post>

Defines a new block <command> with <catcode table>, <pre> at the beginning and <post> at the
end. If <catcode table> is missing, \verbcatcodes is used. Verbatim blocks work as follows :
first, there is no continuation command, i.e. only \myverbatimblock and \myverbatimblock/

are allowed, not \myverbatimblock| (it might exist somewhere in the future). Second, the block
opening takes one optional argument between brackets, which is the name of the verbatim block.
ird, <pre> is executed at the beginning, and <post> at the end, as defined with \newverbatim.
Fourth, the end statement \myverbatimblock/ should be on a line of its own. What a verbatim
block does is the following (not taking into account what <pre> and <post> execute) : it stores
its contents as is, along with the <catcode table> the block was declared with, and that's it.
en come the following two functions.

\doverbatim [<name>]

Executes the contents of <name> (with the current catcode regime). If name is missing, last is
used, a special name which refers to the last verbatim block.

\printverbatim [<name>]

Executes the contents of <name> (or last if <name> is missing) with the catcode table associated
with the block <name> was stored with. Since that catcode table is \verbcatcodes by default, it
generally results in the contents being typeset.

As an example :

\newverbatim\myverbatim{\vskip\baselineskip}

{\printverbatim\vskip\baselineskip}

\myverbatim[example]

\def\foo{hello !}%

\foo

\myverbatim/

And now we are going to print: \doverbatim[example].

\verbatim

A predefined verbatim block, designed as follows :

\newverbatim\verbatim{\codefont\parindent0pt}

{\vskip\baselineskip\printverbatim\relax

\vskip\baselineskip\removenextindent}

I.e. it switches to the console-like font, sets the paragraph indentation to nothing, prints its
contents between two blank lines and removes the indentation of the paragraph to follow.

Each verbatim block adds a table to the Lua table pitex.verbatims (yes, with an s) ; the
key is the block's name, and the value is a table with lines as values, indexed by numbers, plus
a regime key which returns the catcode table's number of the block. For instance, the core
operation performed by \printverbatim[<name>] is :

tex.print(pitex.verbatims[<name>].regime, pitex.verbatims[<name>])

8 Insertions (inserts.ptx)
Insertions are still a mess, and not related to parameters. Yet you can use :

\footnote <text>

Typesets <text> in a footnote. How astounding.
\figure [<title>]

A block creating a figure with title <title>.
\table [<title>]

e same as <figure>, except Table will be used instead of Fig in the caption.
\infigure

Ablock creating a figure in the main text, i.e. between paragraphs.

9 Layout and output routine (output.ptx)
e page layout can be specified with the page parameter, whose attributes are :

width (dimension)

e width of the page.
height (dimension)

e height of the page.
baselineskip (glue)

e baseline distance.
topskip (glue)

e distance between the top of the textblock and the first baseline.
top (dimension)

e height of the upper margin.
lines

e number of lines on a page.
hsize (dimension)

e width of the textblock.
left (dimension)

Width of the left margin.
right (dimension)

Width of the right margin. If specified, hsize is ignored and the texblock's width is set to width

- left - right.
parindent (dimension)

e width of the indentation.
parskip (glue)

e glue between paragraphs.
e output routine holds nothing very interesting for the moment. I used to redefine it for

each job. Now it is set up with gates, but I haven't taken the time yet to make it really powerful.

Plus I should rewrite everything in Lua as much as possible. Anyway, \output contains the
output gate, from the OutputRoutine family associated with the \OutputRoutine command ;
the gates work as follows (passed arguments aren't indicated, because there isn't any ; although
someday perhaps the gates will pass a box between them, to be less dependant on \outputbox,
which is used, by the way, instead of box 255, so any box register can be used) :

output precheck
shipout processmarginalia

inserts inserts_figures
inserts_footnotes

headers
ship
postship

output

e main list gate, holding the following.
precheck

Checks whether \outputpenalty is smaller than \widowpenalty. If not, \vsize is increased or
decreased (if there are inserts) by \baselineskip, so that the widow is accommodated or a line is
given to the next page. In any case, the output box is repassed to TEX with \holdinginserts=0.
e gate is then set to skip, so it isn't executed again.

shipout

A list gate containing gates to write the page. By default it is skipped, so it isn't executed when
the previous gate is, and vice-versa.

processmarginalia

Insert the marginal notes (see \marginnote below). Can be obviously removed if there are no
such notes.

inserts

An l-gate containing the following two m-gates.
inserts_figures

Adds the figures. (Conditional : the box \ptx@insert_figures isn't empty.)
inserts_footnotes

Adds the footnotes. (Conditional : the box \ptx@insert_footnotes isn't empty.)
headers

Inserts headers or footers, i.e. page number, running title, etc.
ship

Ships out the page.
postship

Resets some stuff (set output_shipout back to skip), and increments the page number.
And now a lonely command :

\marginnote [options]<text>

Produces a marginal note with <text>. Uses the attributes (font, baselineskip, hsize) of the
marginnote parameter, with the following attributes :

hsize (dimension)

Width of the textblock in the note.
hpos (ff, fr, rf, rr)

Justification of the text : flushed on both sides, ragged on the right, ragged on the left, ragged
on both sides.

font

Font used to typeset the note.
parindent (dimension)

Paragraph indentation for the note.
side (left or right)

Side of the note relative to the textblock. at should depend on whether the note is on an odd
or even side, but for the moment that is not the case.

gap (dimension)

Distance between the textblock and the note.

10 Lua facilities (lua.ptx and base.ptxlua)
\inputluafile <file>

Shorthand for \directluadofile(kpse.find_file(<file>)).
\luacatcodes

A catcode table with Lua-convenient catcodes : #, ~, % and the end of file ^^M are set to catcode
12.

\luacode

A block to write Lua code with the catcodes above.
Lua code in PiTEX is organized mostly in gates ; pitex is a gate table associated with

family pitex, pitex.callback is another table associated with family pitex.callback, and
pitex.misc is a third table associated (how surprising) with family pitex.misc. e division of
labour isn't perfectly defined, to say the least.

e pitex family holds general commands, namely :
pitex.log (<message>, ...)

Writes a <message> formatted as string.format(<message>, ...)

pitex.error (<message>, ...)

Same as the previous function, but less friendly.
e pitex.callback family is concerned with callback management. It has one interesting

function (well, a gate) devoted to handling functions in callbacks as gates :
pitex.callback.register (<callback>, <gate>)

An l-gate is registered in the callback, with subgates added to it ; the name of the l-gate is the
same as the callback where it is registered (with the family prefix pitex.callback added when
necessary). For instance the list gate containing functions to used in process_input_buffer is
called process_input_buffer. Ordinary you would add a subgate to such a callback with the
add action :

pitex.callback.add ("mygate", "process_input_buffer")

However, the l-gate associated with the callback isn't created by default, nor registered in the
callback. is means that add above will fail miserably if process_input_buffer hasn't been
created beforehand. is function is meant to circumvent that : if the l-gate exists, it boils
down to add ; otherwise it creates it and registers it in the callback, and then add the gate.
Note that the syntax follows the original callback.register function, with the callback first
and the function second, even though you're adding gates to l-gates, with the syntax of add
being subgates first, l-gate second. To manage the gates, thus created, you can then rely on the
original gate actions.

So, when I say `gates X and Y are registered in callback Z', it means `gates X and Z are
subgates of l-gate pitex.callback:Z, itself registered in callback Z' ; unless otherwise indicated,
X and Z belong to the pitex.callback family.

And here are the gates registered in callbacks : process_input_buffer contains convert,
which turns latin1 into UTF-8. Verbatim blocks also register process_verbatim, which is
removed when the block ends. e kerning callback contains french_punctuation, meant to
add thin space before somepunctuationmark, and original_kerning, which is just a gate version
of the node.kerning function. In post_linebreak_filter you'll find pitex.misc:underline,
which deals with material to be underline and pitex.misc:mark_lines, which marks lines
where a margin note is to be added. ose last two gates should be rewritten as complex l-gates
(they're just big functions for the moment) some day. If you neither underline nor use marginal
notes, you can remove them.

11 Things that didn't make it elsewhere (pitex.tex)
General properties of the document can be set with the document parameter, with the following
attributes (the navigator parameter has a meta attribute set to document, which is why you'll
find attributes here used by Navigator) :

author

e author of the document.
title

e title of the document.
pdftitle

e title that Navigator will use for the document's properties (defaults to title).
date

e date of the document
pdfdate

e date that Navigator will use for the document's properties ; should be a properly formatted
PDF date (this corresponds to the date attribute in the navigator parameter ; note that pdfdate
doesn't defaults to date, because the latter is supposed to hold a readable date).

subject

For the document's properties.
keywords

Again, the properties.

mode (outlines, bookmarks, thumbs, thumbnails, attachments, files, oc)

What should be displayed in the navigation bar when the document is opened. See the
documentation to Navigator.

layout (onepage, onecolumn, twopage, twocolumn, twopage*, twocolumn*)

How the document is displayed when opened. See the documentation of Navigator.
\newattribute <command>

Defines <command> as an attribute register.
\unsetattribute <command>

Unsets attribute <command>.
\attributenumber <command>

Returns the number of attribute register <command> (not its value ; you get the value with \the ;
this is to pass to Lua).

\freedef <command>{<definition>}

Same as \def\foo#1{...}, except <command> can take its argument between double quotes (°")
or slahes (/), and of course as single token or brace-delimited.

\ifmaintext

Conditional that is true when in main text ; inserts, section headings, etc., should turn it to
false, and sets their own to true.

\newcatcodetable <command><catcode settings>

Defines <command> as a catcode table with <catcode settings> ; the latter are <list of char-

acters> = catcode pairs, separated by commas, like the argument of texapi 's \setcatcodes.
\texcatcodes

A code catcode table with the traditional catcodes.
\inputpitexfile <file><space>

Inputs <file> unless the initialization script says otherwise. If <file> has no extension, .ptx
is used.

\antigobblespace

Adds a space if the next character has catcode 11 or is an opening parenthesis. For instance,
after \def\tex{\TeX\antigobblespace}, you can type \tex is typesetting programwithout
worrying for gobbled space. Note that only ASCII letters have catcode 11 by default (not
accented characters).

\strut <height><depth>

Produces an invisible vertical rule with the specified dimensions.
\colorbox [<dimensions>]<RGB color><text>

Puts <text> in a colored box with background color <RGB color> (e.g. three space-separated
numbers between 0 and 1) and with padding <dimensions>. If <dimensions> is missing, padding
is done according to the \extraboxspace length. Otherwise, if <dimensions> contains one
value, it is used on all side ; if there are two values (separated by commas), the first is used for
top and bottom padding, and the second for left and right padding ; with three value, the third
specifies bottom padding, and a fourth specifies left padding. Very unlikely to remain in its
present state or to remain at all.

\extraboxspace

Default padding for the previous command.
\og

Produces an opening guillemet : « (character 0x00AB).
\fg

Produces a closing guillemet : » (character 0x00BB). Uses \antigobblespace.
\trace

Sets \tracingcommands to 3 and \tracingmacros to 2.
\untrace

Sets \tracingcommands and \tracingmacros to 0.

	Introduction
	Fonts (fonts.ptx and fonts.ptxlua)
	Sections (sections.ptx)
	Main sectioning commands
	Various commands

	References (references.ptx)
	Blocks (blocks.ptx)
	Dealing with files (files.ptx)
	Verbatim (verbatim.ptx)
	Insertions (inserts.ptx)
	Layout and output routine (output.ptx)
	Lua facilities (lua.ptx and base.ptxlua)
	Things that didn't make it elsewhere (pitex.tex)

